zbMATH — the first resource for mathematics

Relaxed Poisson cure rate models. (English) Zbl 1381.62281
Summary: The purpose of this article is to make the standard promotion cure rate model [A. Yu. Yakovlev and A. D. Tsodikov, Stochastic models of tumor latency and their biostatistical applications. Singapore: World Scientific Publishing (1996; Zbl 0919.92024)] more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution [N. Laskin, Commun. Nonlinear Sci. Numer. Simul. 8, No. 3–4, 201–213 (2003; Zbl 1025.35029)]. It is proved that the well-known Mittag-Leffler relaxation function [M. N. Berberan-Santos, J. Math. Chem. 38, No. 4, 629–635 (2005; Zbl 1101.33015)] is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models [the first author et al., J. Stat. Plann. Inference 139, No. 10, 3605–3611 (2009; Zbl 1173.62074)]. Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented.

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
Full Text: DOI
[1] Berberan-Santos, Properties of the Mittag-Leffler relaxation function, Journal of Mathematical Chemistry 38 pp 629– (2005) · Zbl 1101.33015 · doi:10.1007/s10910-005-6909-z
[2] Cahoy, Parameter estimation for fractional Poisson processes, Journal of Statistical Planning and Inference 140 pp 106– (2010) · Zbl 1205.62118 · doi:10.1016/j.jspi.2010.04.016
[3] Cancho, A flexible model for survival data with a cure rate: a Bayesian approach, Journal of Applied Statistics 38 pp 57– (2011) · doi:10.1080/02664760903254052
[4] Cooner, Flexible cure rate modeling under latent activation schemes, Journal of the American Statistical Association 102 pp 560– (2007) · Zbl 1172.62331 · doi:10.1198/016214507000000112
[5] Cowles, Markov chain Monte Carlo convergence diagnostics: a comparative review, Journal of the American Statistical Association 91 pp 883– (1996) · Zbl 0869.62066 · doi:10.1080/01621459.1996.10476956
[6] Gamerman, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (2006)
[7] Geweke, Evaluating the Accuracy of Sampling-based Approaches to Calculating Posterior Moments (1992)
[8] Gorenflo, Computation of the Mittag-Leffler function E\(\alpha\),\(\beta\)(z) and its derivative, Fractional Calculus and Applied Analysis 5 pp 491– (2002) · Zbl 1027.33016
[9] Ibrahim, Bayesian Survival Analysis (2001) · Zbl 0978.62091 · doi:10.1007/978-1-4757-3447-8
[10] Jayakumar, The first-order autoregressive Mittag-Leffler process, Journal of Applied Probability 30 pp 462– (1993) · Zbl 0777.60063 · doi:10.2307/3214855
[11] Jose, A count model based on Mittag-Leffler interarrival times, Statistica 4 pp 501– (2011)
[12] Kirkwood, High- and low-dose interferon alfa-2b in high-risk melanoma: First analysis of intergroup trial E1690/S9111/C9190, Journal of Clinical Oncology 18 pp 2444– (2000) · doi:10.1200/JCO.2000.18.12.2444
[13] Kokonendji, Connections of the Poisson weight function to overdispersion and underdispersion, Journal of Statistical Planning and Inference 138 pp 1287– (2008) · Zbl 1133.62007 · doi:10.1016/j.jspi.2007.05.028
[14] Laskin, Fractional Poisson process, Communication in Non Linear Science and Numerical Simulation 8 pp 201– (2003) · Zbl 1025.35029 · doi:10.1016/S1007-5704(03)00037-6
[15] Mauro, Full characterization of the fractional Poisson process, Europhysics Letters 96 pp 20004– (2011) · doi:10.1209/0295-5075/96/20004
[16] Mittag-Leffler, Une generalisation de lâintegrale de Laplace-Abel, Comptes Rendus de lAcadémie des Sciences, Series IIC 137 pp 537– (1903)
[17] Mudholkar, The exponentiated Weibull family: a reanalysis of the bus-motor failure data, Technometrics 37 pp 436– (1995) · Zbl 0900.62531 · doi:10.1080/00401706.1995.10484376
[18] Rodrigues, COM-Poisson cure rate survival models and an application to a cutaneous melanoma data, Journal of Statistical Planning and Inference 139 pp 3605– (2009a) · Zbl 1173.62074 · doi:10.1016/j.jspi.2009.04.014
[19] Rodrigues, On the unification of the long-term survival models, Statistics and Probability Letters 79 pp 753– (2009b) · Zbl 1349.62485 · doi:10.1016/j.spl.2008.10.029
[20] Tucker, How well is the probability of tumor cure after fractionated irradiation described by Poisson statistics, Radiation Research 24 pp 273– (1990) · doi:10.2307/3577839
[21] Yakovlev, Stochastic Models of Tumor Latency and Their Biostatistical Applications (1996) · Zbl 0919.92024 · doi:10.1142/2420
[22] Yin, Cure rate models: a unified approach, Canadian Journal of Statistics 33 pp 559– (2005) · Zbl 1098.62127 · doi:10.1002/cjs.5550330407
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.