zbMATH — the first resource for mathematics

On automorphisms of \(C^{*}\)-algebras whose Voiculescu entropy is genuinely non-commutative. (English) Zbl 1235.37010
Let \(A\) be an (exact) \(C^*\)-algebra, \(\alpha \in \text{Aut}(A)\) and let \(ht(\alpha)\) be the Voiculescu topological entropy of \(\alpha\). Set \(ht_C(\alpha)= \sup \{ht(\alpha |_C): C \text{ a commutative }\alpha\text{-invariant } C^*\text{-subalgebra of } A\}\). It is shown that the bitstream shifts studied in [S. Neshveyev and E. Størmer, Dynamical entropy in operator algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 50. Berlin: Springer (2006; Zbl 1109.46002)] give counterexamples to the equality \(ht(\alpha)=ht_C(\alpha)\).
37B40 Topological entropy
46L55 Noncommutative dynamical systems
Full Text: DOI arXiv
[1] DOI: 10.1017/S0143385700009718 · Zbl 0832.46059 · doi:10.1017/S0143385700009718
[2] Neshveyev, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (2006)
[3] DOI: 10.1007/PL00005539 · Zbl 0998.46033 · doi:10.1007/PL00005539
[4] DOI: 10.1007/s002220050229 · Zbl 0919.46043 · doi:10.1007/s002220050229
[5] DOI: 10.1007/s11005-008-0279-y · Zbl 1182.46055 · doi:10.1007/s11005-008-0279-y
[6] DOI: 10.1006/jfan.2000.3705 · Zbl 0992.46052 · doi:10.1006/jfan.2000.3705
[7] DOI: 10.1007/BF01225381 · Zbl 0637.46073 · doi:10.1007/BF01225381
[8] DOI: 10.1007/BF02392643 · Zbl 1021.46050 · doi:10.1007/BF02392643
[9] DOI: 10.1007/BF02108329 · Zbl 0824.46079 · doi:10.1007/BF02108329
[10] DOI: 10.1017/S0143385798108325 · Zbl 0932.46057 · doi:10.1017/S0143385798108325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.