zbMATH — the first resource for mathematics

Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain. (English) Zbl 1119.74026
Summary: Building on previous work for 3D inverse scattering in the frequency domain [B. B. Guzina and M. Bonnet, Q. J. Mech. Appl. Math. 57, No. 2, 161–179 (2004; Zbl 1112.74035)], this article develops the concept of topological derivative for 3D elastic and acoustic-wave imaging of media of arbitrary geometry using data in the time domain. The topological derivative, which quantifies the sensitivity of cost functional associated with the inverse scattering problem due to the creation at a specified location of an infinitesimal hole (for the elastodynamic case) or rigid inclusion (for the acoustic case), is expressed in terms of time convolution of the free field and a supplementary adjoint field. The derivation of the topological derivative follows the generic pattern proposed in previous studies, which is transposable to a variety of other physical problems. A numerical example, where the featured cost function is defined in terms of synthetic data arising from the scattering of plane acoustic waves by a rigid spherical inclusion, illustrates the utility of the topological derivative concept for defect identification using time-varying data.

74J25 Inverse problems for waves in solid mechanics
74J05 Linear waves in solid mechanics
76Q05 Hydro- and aero-acoustics
Full Text: DOI
[1] Bonnet, M., BIE and material differentiation applied to the formulation of obstacle inverse problems, Engrg. anal. boundary elem., 15, 121-136, (1995)
[2] Guzina, B.B.; Nintcheu Fata, S.; Bonnet, M., On the stress-wave imaging of cavities in a semi-infinite solid, Int. J. solids struct., 40, 1505-1523, (2003) · Zbl 1032.74576
[3] Colton, D.; Kirsch, A., A simple method for solving inverse scattering problems in the resonance region, Inverse problems, 12, 383-393, (1996) · Zbl 0859.35133
[4] Nintcheu Fata, S.; Guzina, B.B., A linear sampling method for near-field inverse problems in elastodynamics, Inverse problems, 20, 713-736, (2004) · Zbl 1086.35145
[5] Eschenauer, H.A.; Kobelev, V.V.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. optim., 8, 42-51, (1994)
[6] A. Schumacher, Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien, Ph.D. thesis, University of Siegen, Germany, 1995.
[7] Bendsoe, M.P.; Sigmund, O., Topology optimization, (2003), Springer-Verlag · Zbl 0957.74037
[8] Garreau, S.; Guillaume, P.; Masmoudi, M., The topological asymptotic for PDE systems: the elasticity case, SIAM J. control optim., 39, 1756-1778, (2001) · Zbl 0990.49028
[9] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM J. control optim., 37, 1251-1272, (1999) · Zbl 0940.49026
[10] Guzina, B.B.; Bonnet, M., Topological derivative for the inverse scattering of elastic waves, Quart. J. mech. appl. math., 57, 161-179, (2004) · Zbl 1112.74035
[11] Bonnet, M.; Guzina, B.B., Sounding of finite solid bodies by way of topological derivative, Int. J. numer. methods engrg., 61, 2344-2373, (2004) · Zbl 1075.74564
[12] R. Gallego, G. Rus, Identification of cracks and cavities using the topological sensitivity boundary integral equation, in: Proc. IABEM 2002 Conference, Austin, Texas, {\sccd-rom}, 2002.
[13] Jackowska-Strumillo, L.; Sokolowski, J.; Zochowski, A., Topological optimization and inverse problems, Comput. assisted mech. engrg. sci., 10, 2, 163-176, (2002) · Zbl 1108.74378
[14] Feijóo, G.R., A new method in inverse scattering based on the topological derivative, Inverse problems, 20, 1819-1840, (2004) · Zbl 1077.78010
[15] Haslinger, J.; Mäkinen, R.A.E., Introduction to shape optimization: theory, approximation and computation, (2003), SIAM Philadelphia · Zbl 1020.74001
[16] Tarantola, A., Inverse problem theory and methods for model parameter estimation, (2005), SIAM · Zbl 1074.65013
[17] Michalewicz, Z.; Fogel, D.B., How to solve it: modern heuristics, (2004), Springer-Verlag · Zbl 1058.68105
[18] Wheeler, L.T.; Sternberg, E., Some theorems in classical elastodynamics, Arch. rat. mech. anal., 31, 51-90, (1968) · Zbl 0187.47003
[19] Eringen, A.C.; Suhubi, E.S., Elastodynamics (linear theory), vol. II, (1975), Academic Press · Zbl 0138.21202
[20] Ahmad, S.; Banerjee, P.K., Time-domain transient elastodynamic analysis of 3-D solids by BEM, Int. J. numer. methods engrg., 26, 1709-1728, (1988) · Zbl 0663.73048
[21] Beskos, D.E., Boundary element methods in dynamic analysis, part II (1986-1996), Appl. mech. rev., 50, 149-197, (1997)
[22] Guiggiani, M., Formulation and numerical treatment of boundary integral equations with hypersingular kernels, (), 85-124, Chapter 3
[23] Tanaka, M.; Sladek, V.; Sladek, J., Regularization techniques applied to boundary element methods, Appl. mech. rev., 47, 457-499, (1994)
[24] Bonnet, M., Boundary integral equations methods for solids and fluids, (1999), John Wiley and Sons
[25] Bonnet, M., A general boundary-only formula for crack shape sensitivity of integral functionals, C.R. acad. sci. Paris, série II, 327, 1215-1221, (1999) · Zbl 0965.74055
[26] Ergin, A.A.; Shanker, B.; Michielssen, E., Fast evaluation of three-dimensional transient wave fields using diagonal translation operators, J. comput. phys., 146, 157-180, (1998) · Zbl 0916.65092
[27] Takahashi, T.; Nishimura, N.; Kobayashi, S., A fast BIEM for three-dimensional elastodynamics in time domain, Engrg. anal. boundary elem., 28, 165-180, (2004) · Zbl 1049.74060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.