zbMATH — the first resource for mathematics

The mean-field limit for a regularized Vlasov-Maxwell dynamics. (English) Zbl 1251.82037
The present work establishes the mean-field limit of a \(N\)-particle system towards a regularized variant of the relativistic Vlasov-Maxwell system, following the work of W. Braun and K. Hepp [Commun. Math. Phys. 56, No. 2, 101–113 (1977; Zbl 1155.81383)] and of R. L. Dobrushin [Funct. Anal. Appl. 13, 115–123 (1979; Zbl 0422.35068)] for the Vlasov-Poisson system. The main ingredients in the analysis of this system are (a) a kinetic formulation of the Maxwell equations in terms of a distribution of the electromagnetic potential in the momentum variable, (b) a regularization procedure for which an analogue of the total energy – i.e., the kinetic energy of the particles plus the energy of the electromagnetic field – is conserved and (c) an analogue of Dobrushin’s stability estimate for the Monge-Kantorovich-Rubinstein distance between two solutions of the regularized Vlasov-Poisson dynamics adapted to retarded potentials.

82C22 Interacting particle systems in time-dependent statistical mechanics
35Q83 Vlasov equations
35Q61 Maxwell equations
82D10 Statistical mechanics of plasmas
Full Text: DOI arXiv
[1] Bouchut F., Golse F., Pallard C.: Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system. Arch. Rat. Mech. Anal. 170, 1–15 (2003) · Zbl 1044.76075
[2] Bouchut F., Golse F., Pallard C.: Nonresonant smoothing for coupled wave+transport equations and the Vlasov-Maxwell system. Rev. Mat. Iberoamericana 20, 865–892 (2004) · Zbl 1064.35097
[3] Braun W., Hepp K.: The Vlasov dynamics and its fluctuations in the 1/n limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977) · Zbl 1155.81383
[4] Calogero S., Rein G.: On classical solutions of the Nordström Vlasov system. Comm. Part. Diff. Eqs. 28, 1863–1885 (2003) · Zbl 1060.35141
[5] Choquet-Bruhat Y.: Problème de Cauchy pour le système intégro-différentiel d’Einstein-Liouville. Ann. Inst. Fourier 21, 181–201 (1971) · Zbl 0208.14303
[6] DiPerna R.J., Lions P.-L.: Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42, 729–757 (1989) · Zbl 0698.35128
[7] Dobrushin R.L.: Vlasov equations. Func. Anal. Appl. 13, 115–123 (1979) · Zbl 0422.35068
[8] Elskens Y., Kiessling M.K.-H., Ricci V.: The Vlasov limit for a system of particles which interact with a wave field. Commun. Math. Phys. 285, 673–712 (2009) · Zbl 1157.70010
[9] Erdös L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001) · Zbl 1014.81063
[10] Hauray M., Jabin P.-E.: N-particle approximation of the Vlasov equations with singular potential. Arch. Rat. Mech. Anal. 183, 489–524 (2007) · Zbl 1107.76066
[11] Jackson, J.D.: Classical Electrodynamics. New York: John Wiley and Sons Inc., 1999 · Zbl 0920.00012
[12] Kiessling M.K.-H.: Microscopic derivatons of Vlasov equations. Comm. Nonlin. Sci. Numer. Simul. 13, 106–113 (2008) · Zbl 1129.35463
[13] Luchina, A.A., Vlasov, A.A.: Chapter II, Sect. 12, of [21]
[14] Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. New York: Springer-Verlag, 1994 · Zbl 0789.76002
[15] Neunzert, H., Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. Lecture Notes in Math. Vol. 395, Berlin: Springer, 1974, pp. 275–290 · Zbl 0324.76062
[16] Rein G.: Global weak solutions of the relativistic Vlasov-Maxwell system revisited. Commun. Math. Sci. 2, 145–158 (2004) · Zbl 1090.35168
[17] Spohn H.: Dynamics of Charged Particles and their Radiation Fields. Cambridge Univ. Press, Cambridge (2004) · Zbl 1078.81004
[18] Villani, C.: Topics in Optimal Transportation. Providence RI: Amer. Math. Soc., 2003
[19] Villani, C.: Optimal Transport: Old and New. Berlin-Heidelberg: Springer-Verlag, 2009 · Zbl 1156.53003
[20] Vlasov A.A.: On Vibration Properties of Electron Gas (in Russian). J. Exp. Theor. Phys. 8(3), 291 (1938)
[21] Vlasov, A.A.: Many-Particle Theory and Its Application to Plasma. New York: Gordon and Breach, 1961
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.