×

zbMATH — the first resource for mathematics

A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. (English) Zbl 1346.90326
Summary: This paper surveys recent publications on berth allocation, quay crane assignment, and quay crane scheduling problems in seaport container terminals. It continues the survey of C. Bierwirth and F. Meisel [Eur. J. Oper. Res. 202, No. 3, 615–627 (2010; Zbl 1176.90373)] that covered the research up to 2009. Since then, there was a strong increase of activity observed in this research field resulting in more than 120 new publications. In this paper, we classify this new literature according to the features of models considered for berth allocation, quay crane scheduling and integrated approaches by using the classification schemes proposed in the preceding survey. Moreover, we identify trends in the field, we take a look at the methods that have been developed for solving new models, we discuss ways for evaluating models and algorithms, and, finally, we light up potential directions for future research.

MSC:
90B35 Deterministic scheduling theory in operations research
90-02 Research exposition (monographs, survey articles) pertaining to operations research and mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Angeloudis, P.; Bell, M. G.H., A review of container terminal simulation models, Maritime Policy & Management, 38, 5, 523-540, (2011)
[2] Arango, C.; Cortés, P.; Muñuzuri, J.; Onieva, L., Berth allocation planning in seville inland port by simulation and optimisation, Advanced Engineering Informatics, 25, 3, 452-461, (2011)
[3] Aras, N.; Türkoğulları, Y. B.; Taşkın, Z. C.; Altınel, K., Simultaneous optimization of berth allocation, quay crane assignment and quay crane scheduling problems in container terminals, (Helber, S.; Breitner, M.; Rösch, D.; Schön, C.; Graf von der Schulenburg, J.-M.; Sibbertsen, P.; Steinbach, M.; Weber, S.; Wolter, A., Operations research proceedings 2012, (2014), Springer Heidelberg, New York, Dordrecht, London), 101-107 · Zbl 1305.90270
[4] Bierwirth, C.; Meisel, F., A survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research, 202, 3, 615-627, (2010) · Zbl 1176.90373
[5] Blazewicz, J.; Cheng, T. C.E.; Machowiak, M.; Oguz, C., Berth and quay crane allocation: A moldable task scheduling model, Journal of the Operational Research Society, 62, 7, 1189-1197, (2011)
[6] Boysen, N.; Emde, S.; Fliedner, M., Determining crane areas for balancing workload among interfering and noninterfering cranes, Naval Research Logistics, 59, 8, 656-662, (2012)
[7] Buhrkal, K.; Zuglian, S.; Ropke, S.; Larsen, J.; Lusby, R., Models for the discrete berth allocation problem: A computational comparison, Transportation Research Part E: Logistics and Transportation Review, 47, 4, 461-473, (2011)
[8] Cao, J.; Shi, Q.; Lee, D.-H., Integrated quay crane and yard truck schedule problem in container terminals, Tsinghua Science and Technology, 15, 4, 467-474, (2010)
[9] Carlo, H. J., Vis, I. F. A. Roodbergen, K. J. (2013). Seaside operations in container terminals: Literature overview, trends, and research directions. Flexible Services and Manufacturing Journal, 1-39. doi: 10.1007/s10696-013-9178-3 · Zbl 1338.90003
[10] Carlo, H. J.; Vis, I. F.A.; Roodbergen, K. J., Storage yard operations in container terminals: literature overview, trends, and research directions, European Journal of Operational Research, 235, 2, 412-430, (2014) · Zbl 1305.90007
[11] Carlo, H. J.; Vis, I. F.A.; Roodbergen, K. J., Transport operations in container terminals: literature overview, trends, research directions and classification scheme, European Journal of Operational Research, 236, 1, 1-13, (2014) · Zbl 1338.90003
[12] Chang, D.; Jiang, Z.; Yan, W.; He, J., Integrating berth allocation and quay crane assignments, Transportation Research Part E: Logistics and Transportation Review, 46, 6, 975-990, (2010)
[13] Chen, J. H.; Lee, D.-H.; Cao, J. X., Heuristics for quay crane scheduling at indented berth, Transportation Research Part E: Logistics and Transportation Review, 47, 6, 1005-1020, (2011)
[14] Chen, J. H.; Lee, D.-H.; Cao, J. X., A combinatorial benders’ cuts algorithm for the quayside operation problem at container terminals, Transportation Research Part E: Logistics and Transportation Review, 48, 1, 266-275, (2012)
[15] Chen, J. H.; Lee, D.-H.; Goh, M., An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem, European Journal of Operational Research, 232, 1, 198-208, (2014) · Zbl 1305.90176
[16] Cheong, C. Y.; Tan, K. C., A multi-objective multi-colony ant algorithm for solving the berth allocation problem, (Liu, Y.; Sun, A.; Loh, H. T.; Lu, W. F.; Lim, E.-P., Studies in Computational Intelligence: Vol. 116. Advances of computational intelligence in industrial systems, (2008), Springer), 333-350
[17] Cheong, C. Y.; Tan, K. C.; Liu, D. K.; Lin, C. J., Multi-objective and prioritized berth allocation in container ports, Annals of Operations Research, 180, 1, 63-103, (2010) · Zbl 1202.90130
[18] Choo, S.; Klabjan, D.; Simchi-Levi, D., Multiship crane sequencing with yard congestion constraints, Transportation Science, 44, 1, 98-115, (2010), in press
[19] Christiansen, M.; Fagerholt, K.; Nygreen, B.; Ronen, D., Ship routing and scheduling in the new millennium, European Journal of Operational Research, 228, 3, 467-483, (2013) · Zbl 1317.90112
[20] Chung, S. H.; Chan, F. T.S., A workload balancing genetic algorithm for the quay crane scheduling problem, International Journal of Production Research, 51, 16, 4820-4834, (2013)
[21] Chung, S. H.; Choy, K. L., A modified genetic algorithm for quay crane scheduling operations, Expert Systems with Applications, 39, 4, 4213-4221, (2012)
[22] Daganzo, C. F., The crane scheduling problem, Transportation Research Part B: Methodological, 23, 3, 159-175, (1989)
[23] de Oliveira, R. M.; Mauri, G. R.; Lorena, L. A.N., Clustering search for the berth allocation problem, Expert Systems with Applications, 39, 5, 5499-5505, (2012)
[24] de Oliveira, R. M.; Mauri, G. R.; Lorena, L. A.N., Clustering search heuristic for solving a continuous berth allocation problem, (Hao, J.-K.; Middendorf, M., Lecture notes in computer science: Vol. 7245. Evocop 2012, (2012), Springer), 49-62 · Zbl 1292.90345
[25] Diabat, A.; Theodorou, E., An integrated quay crane assignment and scheduling problem, Computers & Industrial Engineering, 73, 115-123, (2014)
[26] Du, Y.; Chen, Q.; Quan, X.; Long, L.; Fung, R. Y.K., Berth allocation considering fuel consumption and vessel emissions, Transportation Research Part E: Logistics and Transportation Review, 47, 6, 1021-1037, (2011)
[27] Elwany, M. H.; Ali, I.; Abouelseoud, Y., A heuristics-based solution to the continuous berth allocation and crane assignment problem, Alexandria Engineering Journal, 52, 4, 671-677, (2013)
[28] Emde, S.; Boysen, N.; Briskorn, D., The berth allocation problem with mobile quay walls: problem definition, solution procedures, and extensions, Journal of Scheduling, 17, 3, 289-303, (2014) · Zbl 1297.90040
[29] Expósito-Izquierdo, C.; González-Velarde, J. L.; Melián-Batista, B.; Moreno-Vega, J. M., Hybrid estimation of distribution algorithm for the quay crane scheduling problem, Applied Soft Computing, 13, 10, 4063-4076, (2013)
[30] Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, J. M., An estimation of distribution algorithm for solving the quay crane scheduling problem with availability constraints, (Graña, M.; Toro, C.; Posada, J.; Howlett, R. J.; Jain, L. C., Advances in knowledge-based and intelligent information and engineering systems, 243, (2011), IOS Press), 10-19
[31] Expósito-Izquierdo, C.; Melián-Batista, B.; Moreno-Vega, J. M., Variable neighbourhood search for the quay crane scheduling problem, 11th International conference on intelligent systems design and applications (ISDA), 463-468, (2011), IEEE Cordoba
[32] Expósito-Izquierdo, C.; Velarde, J. L.G.; Melián-Batista, B.; Moreno-Vega, J. M., Estimation of distribution algorithm for the quay crane scheduling problem, (Pelta, D. A.; Krasnogor, N.; Dumitrescu, D.; Chira, C.; Lung, R., Studies in computational intelligence, 387, (2012), Springer), 183-194
[33] Fu, Y.-M.; Diabat, A.; Tsai, I.-T., A multi-vessel quay crane assignment and scheduling problem: formulation and heuristic solution approach, Expert Systems with Applications, 41, 15, 6959-6965, (2014)
[34] Ganji, S. S.R.; Babazadeh, A.; Arabshahi, N., Analysis of the continuous berth allocation problem in container ports using a genetic algorithm, Journal of Marine Science and Technology, 15, 4, 408-416, (2010)
[35] Giallombardo, G.; Moccia, L.; Salani, M.; Vacca, I., Modeling and solving the tactical berth allocation problem, Transportation Research Part B: Methodological, 44, 2, 232-245, (2010)
[36] Golias, M. M., A simulation based approach to optimize berth throughput under uncertainty at marine container terminals, MODSIM world conference & Expo, Hampton, Virginia, USA, 1-7, (2010)
[37] Golias, M. M., A bi-objective berth allocation formulation to account for vessel handling time uncertainty, Maritime Economics & Logistics, 13, 4, 419-441, (2011)
[38] Golias, M. M.; Boilé, M.; Theofanis, S., Berth scheduling by customer service differentiation: A multi-objective approach, Transportation Research Part E: Logistics and Transportation Review, 45, 6, 878-892, (2009)
[39] Golias, M. M.; Boilé, M.; Theofanis, S., A lamda-optimal based heuristic for the berth scheduling problem, Transportation Research Part C: Emerging Technologies, 18, 5, 794-806, (2010)
[40] Golias, M. M.; Boilé, M.; Theofanis, S.; Taboada, H. A., A multi-objective decision and analysis approach for the berth scheduling problem, International Journal of Information Technology Project Management, 1, 1, 54-73, (2010)
[41] Golias, M. M.; Haralambides, H. E., Berth scheduling with variable cost functions, Maritime Economics & Logistics, 13, 2, 174-189, (2011)
[42] Golias, M. M.; Portal, I.; Konur, D.; Kaisar, E.; Kolomvos, G., Robust berth scheduling at marine container terminals via hierarchical optimization, Computers & Operations Research, 41, 0, 412-422, (2014) · Zbl 1348.90263
[43] Golias, M. M.; Saharidis, G. K.; Boilé, M.; Theofanis, S.; Ierapetritou, M. G., The berth allocation problem: optimizing vessel arrival time, Maritime Economics & Logistics, 11, 4, 358-377, (2009)
[44] Goodchild, A.; Zhao, W.; Wygonik, E., Decision problems and applications of operations research at marine container terminals, (Cochran, J. J.; Cox, L. A.; Keskinocak, P.; Kharoufeh, J. P.; Smith, J. C., Wiley encyclopedia of operations research and management science, (2010), John Wiley & Sons, Inc.), 1-20
[45] Goodchild, A. V.; Daganzo, C. F., Double-cycling strategies for container ships and their effect on ship loading and unloading operations, Transportation Science, 40, 4, 473-483, (2006)
[46] Guan, Y.; Yang, K.-H., Analysis of berth allocation and inspection operations in a container terminal, Maritime Economics & Logistics, 12, 4, 347-369, (2010)
[47] Guan, Y.; Yang, K.-H.; Zhou, Z., The crane scheduling problem: models and solution approaches, Annals of Operations Research, 203, 1, 119-139, (2013) · Zbl 1269.90041
[48] Guldogan, E. U.; Bulut, O.; Tasgetiren, M. F., A dynamic berth allocation problem with priority considerations under stochastic nature, (Huang, D.-S.; Gan, Y.; Gupta, P.; Gromiha, M. M., Lecture notes in computer science: Vol. 6839. Advanced intelligent computing theories and applications, (2012), Springer), 74-82
[49] Guo, P.; Cheng, W.; Wang, Y., A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints, Engineering Optimization, 46, 10, 1411-1429, (2014)
[50] Hakam, M. H.; Solvang, W. D.; Hammervoll, T., A genetic algorithm approach for quay crane scheduling with non-interference constraints at narvik container terminal, International Journal of Logistics Research and Applications, 15, 4, 269-281, (2012)
[51] Han, X.-l.; Lu, Z.-q.; Xi, L.-f., A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time, European Journal of Operational Research, 207, 3, 1327-1340, (2010) · Zbl 1206.90012
[52] Hansen, P.; Oǧuz, C., A note on formulations of static and dynamic berth allocation problems, Les Cahiers du GERAD, 30, 1-17, (2003)
[53] He, J.; Mi, W.; Chang, D.; Yan, W., An investigation into berth allocation and quay crane assignment based on hybrid parallel genetic algorithm, 2009 international conference on artificial intelligence and computational intelligence, 48-53, (2009), Institute of Electrical and Electronics Engineers
[54] Hendriks, M. P.M.; Armbruster, D.; Laumanns, M.; Lefeber, E.; Udding, J. T., Strategic allocation of cyclically calling vessels for multi-terminal container operators, Flexible Services and Manufacturing Journal, 24, 3, 248-273, (2012)
[55] Hendriks, M.; Laumanns, M.; Lefeber, E.; Udding, J. T., Robust cyclic berth planning of container vessels, OR Spectrum, 32, 3, 501-517, (2010) · Zbl 1201.90027
[56] Hendriks, M. P.M.; Lefeber, E.; Udding, J. T., Simultaneous berth allocation and yard planning at tactical level, OR Spectrum, 35, 2, 441-456, (2013) · Zbl 1263.90136
[57] Hoffarth, L.; Voß, S., Berth allocation in a container terminal—development of a decision support system (in German), (Dyckhoff, H.; Derigs, U.; Salomon, M.; Tijms, H. C., Operations research proceedings 1993, (1994), Springer Berlin), 89-95
[58] Hu, Q.-M.; Hu, Z.-H.; Du, Y., Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels, Computers & Industrial Engineering, 70, 1-10, (2014)
[59] Imai, A.; Nagaiwa, K.; Tat, C. W., Efficient planning of berth allocation for container terminals in Asia, Journal of Advanced Transportation, 31, 1, 75-94, (1997)
[60] Imai, A.; Nishimura, E.; Papadimitriou, S., Marine container terminal configurations for efficient handling of mega-containerships, Transportation Research Part E: Logistics and Transportation Review, 49, 1, 141-158, (2013)
[61] Imai, A.; Yamakawa, Y.; Huang, K., The strategic berth template problem, Transportation Research Part E: Logistics and Transportation Review, 72, 0, 77-100, (2014)
[62] Karafa, J.; Golias, M. M.; Ivey, S.; Saharidis, G. K.D.; Leonardos, N., The berth allocation problem with stochastic vessel handling times, The International Journal of Advanced Manufacturing Technology, 65, 1-4, 473-484, (2013)
[63] Kaveshgar, N.; Huynh, N.; Rahimian, S. K., An efficient genetic algorithm for solving the quay crane scheduling problem, Expert Systems with Applications, 39, 18, 13108-13117, (2012)
[64] Kaveshgar, N.; Huynh, N.; Rahimian, S. K., Solving the quay crane scheduling problem using genetic algorithm in MATLAB, Trb 91st annual meeting compendium of papers, 1-20, (2012), Transportation Research Board
[65] Kim, K. H.; Park, Y. M., A crane scheduling method for port container terminals, European Journal of Operational Research, 156, 3, 752-768, (2004) · Zbl 1062.90027
[66] Ku, D. Arthanari, T. S. (2014). On double cycling for container port productivity improvement. Annals of Operations Research, 1-16. doi: 10.1007/s10479-014-1645-z · Zbl 1347.90043
[67] Lalla-Ruiz, E.; González-Velarde, J. L.; Melián-Batista, B.; Moreno-Vega, J. M., Biased random key genetic algorithm for the tactical berth allocation problem, Applied Soft Computing, 22, 60-76, (2014)
[68] Lalla-Ruiz, E.; Melián-Batista, B.; Moreno-Vega, J. M., Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem, Engineering Applications of Artificial Intelligence, 25, 6, 1132-1141, (2012)
[69] Lee, C.-Y., Liu, M. Chu, C. (2014). Optimal algorithm for the general quay crane double-cycling problem. Transportation Science. doi: 10.1287/trsc.2014.0563
[70] Lee, D.-H.; Chen, J. H., An improved approach for quay crane scheduling with non-crossing constraints, Engineering Optimization, 42, 1, 1-15, (2010)
[71] Lee, D.-H.; Chen, J. H.; Cao, J. X., The continuous berth allocation problem: A greedy randomized adaptive search solution, Transportation Research Part E: Logistics and Transportation Review, 46, 6, 1017-1029, (2010)
[72] Lee, D.-H.; Chen, J. H.; Cao, J. X., Quay crane scheduling for an indented berth, Engineering Optimization, 43, 9, 985-998, (2011)
[73] Lee, D.-H.; Jin, J. G., Feeder vessel management at container transshipment terminals, Transportation Research Part E: Logistics and Transportation Review, 49, 1, 201-216, (2013)
[74] Lee, D.-H.; Jin, J. G.; Chen, J. H., Terminal and yard allocation problem for a container transshipment hub with multiple terminals, Transportation Research Part E: Logistics and Transportation Review, 48, 2, 516-528, (2012)
[75] Lee, D.-H.; Wang, H. Q., An approximation algorithm for quay crane scheduling with handling priority in port container terminals, Engineering Optimization, 42, 12, 1151-1161, (2010)
[76] Lee, D.-H.; Wang, H. Q., Integrated discrete berth allocation and quay crane scheduling in port container terminals, Engineering Optimization, 42, 8, 747-761, (2010)
[77] Legato, P.; Mazza, R. M.; Trunfio, R., Simulation-based optimization for discharge/loading operations at a maritime container terminal, OR Spectrum, 32, 3, 543-567, (2010) · Zbl 1200.90022
[78] Legato, P.; Trunfio, R., A local branching-based algorithm for the quay crane scheduling problem under unidirectional schedules, 4OR, 12, 2, 123-156, (2014) · Zbl 1307.90096
[79] Legato, P.; Trunfio, R.; Meisel, F., Modeling and solving rich quay crane scheduling problems, Computers & Operations Research, 39, 9, 2063-2078, (2012) · Zbl 1251.90163
[80] Lehnfeld, J.; Knust, S., Loading, unloading and premarshalling of stacks in storage areas: survey and classification, European Journal of Operational Research, 239, 2, 297-312, (2014) · Zbl 1339.90006
[81] Li, C.-L.; Pang, K.-W., An integrated model for ship routing and berth allocation, International Journal of Shipping and Transport Logistics, 3, 3, 245-260, (2011)
[82] Liang, C.; Guo, J.; Yang, Y., Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning, Journal of Intelligent Manufacturing, 22, 3, 471-479, (2011)
[83] Liang, C.; Hwang, H.; Gen, M., A berth allocation planning problem with direct transshipment consideration, Journal of Intelligent Manufacturing, 23, 6, 2207-2214, (2012)
[84] Liang, C.; Lin, L.; Jo, J., Multiobjective hybrid genetic algorithm for quay crane scheduling in berth allocation planning, Int. J. Manufacturing Technology and Management, 16, 1-2, 127-146, (2009)
[85] Lim, A., The berth planning problem, Operations Research Letters, 22, 2-3, 105-110, (1998) · Zbl 0911.90283
[86] Lin, S.-W.; Ting, C.-J., Solving the dynamic berth allocation problem by simulated annealing, Engineering Optimization, 46, 3, 308-327, (2014)
[87] Liu, M., Zheng, F. Li, J. (2014). Scheduling small number of quay cranes with non-interference constraint. Optimization Letters, 1-10. doi: 10.1007/s11590-014-0756-4
[88] Lu, Z.; Han, X.; Xi, L., Simultaneous berth and quay crane allocation problem in container terminal, Advanced Science Letters, 4, 6-7, 2113-2118, (2011)
[89] Lu, Z.; Han, X.; Xi, L.; Erera, A. L., A heuristic for the quay crane scheduling problem based on contiguous bay crane operations, Computers & Operations Research, 39, 12, 2915-2928, (2012) · Zbl 1349.90379
[90] Mauri, G. R.; de Andrade, L. N.; Lorena, L. A.N., A memetic algorithm for a continuous case of the berth allocation problem, (Rosa, A. C.; Kacprzyk, J.; Filipe, J.; Correia, A. D., Proceedings of the international conference on evolutionary computation theory and applications and the proceedings of the international conference on fuzzy computation theory and applications (IJCCI 2011), (2011), SciTePress), 105-113
[91] Meisel, F., The quay crane scheduling problem with time windows, Naval Research Logistics, 58, 7, 619-636, (2011) · Zbl 1241.90052
[92] Meisel, F.; Bierwirth, C., Heuristics for the integration of crane productivity in the berth allocation problem, Transportation Research Part E, 45, 1, 196-209, (2009)
[93] Meisel, F.; Bierwirth, C., A unified approach for the evaluation of quay crane scheduling models and algorithms, Computers & Operations Research, 38, 3, 683-693, (2011)
[94] Meisel, F.; Bierwirth, C., A framework for integrated berth allocation and crane operations planning in seaport container terminals, Transportation Science, 47, 2, 131-147, (2013)
[95] Meisel, F.; Wichmann, M., Container sequencing for quay cranes with internal reshuffles, OR Spectrum, 32, 3, 569-591, (2010) · Zbl 1201.90031
[96] Monaco, M. F.; Sammarra, M., Quay crane scheduling with time windows, one-way and spatial constraints, International Journal of Shipping and Transport Logistics, 3, 4, 454-474, (2011)
[97] Na, L.; Zhihong, J., Optimization of continuous berth and quay crane allocation problem in seaport container terminal, Second international conference on intelligent computation technology and automation 2009 (ICICTA’09), 229-233, (2009), Institute of Electrical and Electronics Engineers
[98] Nam, H.; Lee, T., A scheduling problem for a novel container transport system: A case of mobile harbor operation schedule, Flexible Services and Manufacturing Journal, 25, 4, 576-608, (2013)
[99] Nguyen, S.; Zhang, M.; Johnston, M.; Chen Tan, K., Hybrid evolutionary computation methods for quay crane scheduling problems, Computers & Operations Research, 40, 8, 2083-2093, (2013) · Zbl 1348.90667
[100] Pantuso, G.; Fagerholt, K.; Hvattum, L. M., A survey on maritime fleet size and mix problems, European Journal of Operational Research, 235, 2, 341-349, (2014) · Zbl 1305.90071
[101] Pap, E.; Bojanić, V.; Bojanić, G.; Georgijević, M., Quay crane scheduling for river container terminals, (Pap, E., Topics in intelligent engineering and informatics, 3, (2013), Springer), 285-300
[102] Park, Y. M.; Kim, K. H., A scheduling method for berth and quay cranes, OR Spectrum, 25, 1, 1-23, (2003) · Zbl 1012.90011
[103] Raa, B.; Dullaert, W.; Schaeren, R. V., An enriched model for the integrated berth allocation and quay crane assignment problem, Expert Systems with Applications, 38, 11, 14136-14147, (2011)
[104] Rashidi, H.; Tsang, E. P.K., Novel constraints satisfaction models for optimization problems in container terminals, Applied Mathematical Modelling, 37, 6, 3601-3634, (2013)
[105] Robenek, T.; Umang, N.; Bierlaire, M.; Ropke, S., A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports, European Journal of Operational Research, 235, 2, 399-411, (2014) · Zbl 1305.90258
[106] Rodriguez-Molins, M.; Barber, F.; Sierra, M. R.; Puente, J.; Salido, M. A., A genetic algorithm for berth allocation and quay crane assignment, (Pavón, J.; Duque-Méndez, N. D.; Fuentes-Fernández, R., Lecture notes in computer science, 7637, (2012), Springer), 601-610
[107] Rodriguez-Molins, M.; Ingolotti, L.; Barber, F.; Salido, M. A.; Sierra, M. R.; Puente, J., A genetic algorithm for robust berth allocation and quay crane assignment, Progress in Artificial Intelligence, 2, 4, 177-192, (2014)
[108] Rodriguez-Molins, M.; Salido, M. A.; Barber, F., A GRASP-based metaheuristic for the berth allocation problem and the quay crane assignment problem by managing vessel cargo holds, Applied Intelligence, 40, 2, 273-290, (2014)
[109] Safaei, N.; Bazzazi, M.; Assadi, P., An integrated storage space and berth allocation problem in a container terminal, International Journal of Mathematics in Operational Research, 2, 6, 674-693, (2010) · Zbl 1198.90265
[110] Saharidis, G. K.D.; Golias, M. M.; Boilé, M.; Theofanis, S.; Ierapetritou, M. G., The berth scheduling problem with customer differentiation: A new methodological approach based on hierarchical optimization, The International Journal of Advanced Manufacturing Technology, 46, 1-4, 377-393, (2010)
[111] Salido, M. A.; Rodriguez-Molins, M.; Barber, F., Integrated intelligent techniques for remarshaling and berthing in maritime terminals, Advanced Engineering Informatics, 25, 3, 435-451, (2011)
[112] Salido, M. A.; Rodriguez-Molins, M.; Barber, F., A decision support system for managing combinatorial problems in container terminals, Knowledge-Based Systems, 29, 1, 63-74, (2012)
[113] Shin, K.; Lee, T., Container loading and unloading scheduling for a mobile harbor system: A global and local search method, Flexible Services and Manufacturing Journal, 25, 4, 557-575, (2013)
[114] Silva, V. M.D.; Novaes, A. G.; Coelho, A. S., Resolution of the berth allocation problem through a heuristic model based on genetic algorithms, (Kreowski, H.-J.; Scholz-Reiter, B.; Thoben, K.-D., Dynamics in logistics, (2011), Springer), 469-480
[115] Song, L.; Cherrett, T.; Guan, W., Study on berth planning problem in a container seaport: using an integrated programming approach, Computers & Industrial Engineering, 62, 1, 119-128, (2012)
[116] Stahlbock, R.; Voß, S., Operations research at container terminals: A literature update, OR Spectrum, 30, 1, 1-52, (2008) · Zbl 1133.90313
[117] Steenken, D.; Voß, S.; Stahlbock, R., Container terminal operation and operations research—A classification and literature review, OR Spectrum, 26, 1, 3-49, (2004) · Zbl 1160.90322
[118] Tang, L.; Zhao, J.; Liu, J., Modeling and solution of the joint quay crane and truck scheduling problem, European Journal of Operational Research, 236, 3, 978-990, (2014) · Zbl 1304.90103
[119] Ting, C.-J.; Wu, K.-C.; Chou, H., Particle swarm optimization algorithm for the berth allocation problem, Expert Systems with Applications, 41, 4, 1543-1550, (2014)
[120] Tran, N. K. Haasis, H.-D. (2013). Literature survey of network optimization in container liner shipping. Flexible Services and Manufacturing Journal. doi: 10.1007/s10696-013-9179-2
[121] Türkoğulları, Y. B.; Taşkın, Z. C.; Aras, N.; Altınel, I. K., Optimal berth allocation and time-invariant quay crane assignment in container terminals, European Journal of Operational Research, 235, 1, 88-101, (2014) · Zbl 1305.90261
[122] Umang, N.; Bierlaire, M.; Vacca, I., The berth allocation problem in bulk ports, Swiss transport research conference (STRC) 2011, 1-24, (2011)
[123] Umang, N.; Bierlaire, M.; Vacca, I., Exact and heuristic methods to solve the berth allocation problem in bulk ports, Transportation Research Part E: Logistics and Transportation Review, 54, 1, 14-31, (2013)
[124] Unsal, O.; Oguz, C., Constraint programming approach to quay crane scheduling problem, Transportation Research Part E: Logistics and Transportation Review, 59, 0, 108-122, (2013)
[125] Ursavas, E., A decision support system for quayside operations in a container terminal, Decision Support Systems, 59, 312-324, (2014)
[126] Vacca, I.; Salani, M.; Bierlaire, M., An exact algorithm for the integrated planning of berth allocation and quay crane assignment, Transportation Science, 47, 2, 148-161, (2013)
[127] Vis, I. F.A.; Anholt, R. G., Performance analysis of berth configurations at container terminals, OR Spectrum, 32, 3, 453-476, (2010)
[128] Vis, I. F.A.; de Koster, R., Transshipment of containers at a container terminal: an overview, European Journal of Operational Research, 147, 1, 1-16, (2003) · Zbl 1011.90005
[129] Wang, S.; Zheng, J.; Zheng, K.; Guo, J.; Liu, X., Multi resource scheduling problem based on an improved discrete particle swarm optimization, Physics Procedia, 25, 1, 576-582, (2012)
[130] Wang, Y.; Chen, Y.; Wang, K., A case study of genetic algorithms for quay crane scheduling, (Chien, B.-C.; Hong, T.-P., Studies in computational intelligence, 214, (2009), Springer), 119-125
[131] Wang, Y.; Kim, K. H., A quay crane scheduling algorithm considering the workload of yard cranes in a container yard, Journal of Intelligent Manufacturing, 22, 3, 459-470, (2011)
[132] Wiese, J.; Kliewer, N.; Suhl, L., A survey of container terminal characteristics and equipment types, (2009), University of Paderborn
[133] Woo, S.-H.; Pettit, S.; Beresford, A.; Kwak, D.-W., Seaport research: A decadal analysis of trends and themes Since the 1980s, Transport Reviews, 32, 3, 351-377, (2012)
[134] Xu, D.; Li, C.-L.; Leung, J. Y.-T., Berth allocation with time-dependent physical limitations on vessels, European Journal of Operational Research, 216, 1, 47-56, (2012) · Zbl 1237.90136
[135] Xu, Y.; Chen, Q.; Quan, X., Robust berth scheduling with uncertain vessel delay and handling time, Annals of Operations Research, 192, 1, 123-140, (2012) · Zbl 1233.90183
[136] Yang, C.; Wang, X.; Li, Z., An optimization approach for coupling problem of berth allocation and quay crane assignment in container terminal, Computers & Industrial Engineering, 63, 1, 243-253, (2012)
[137] Yang, K.-H., The influence of the quay crane traveling time for the quay crane scheduling problem, Proceedings of the international multiconference of engineers and computer scientists 2012, II, 1298-1301, (2012), International Association of Engineers
[138] Yi, D.; GuoLong, L.; ChengJi, L., Model and heuristic algorithm for quay crane scheduling at container terminal, 9th international conference on fuzzy systems and knowledge discovery (FSKD 2012), 1054-1061, (2012), IEEE
[139] Zeng, Q.; Hu, X.; Wang, W.; Fang, Y., Disruption management model and its algorithms for berth allocation problem in container terminals, International Journal of Innovative Computing, Information and Control, 7, 5B, 2763-2773, (2011)
[140] Zeng, Q.; Yang, Z.; Hu, X., Disruption recovery model for berth and quay crane scheduling in container terminals, Engineering Optimization, 43, 9, 967-983, (2011)
[141] Zhang, C.; Zheng, L.; Zhang, Z.; Shi, L.; Armstrong, A. J., The allocation of berths and quay cranes by using a sub-gradient optimization technique, Computers & Industrial Engineering, 58, 1, 40-50, (2010)
[142] Zhang, H.; Kim, K. H., Maximizing the number of dual-cycle operations of quay cranes in container terminals, Computers & Industrial Engineering, 56, 3, 979-992, (2009)
[143] Zhang, L.; Khammuang, K.; Wirth, A., On-line scheduling with non-crossing constraints, Operations Research Letters, 36, 5, 579-583, (2008) · Zbl 1210.90096
[144] Zhen, L.; Chang, D.-F., A bi-objective model for robust berth allocation scheduling, Computers & Industrial Engineering, 63, 1, 262-273, (2012)
[145] Zhen, L.; Chew, E. P.; Lee, L. H., An integrated model for berth template and yard template planning in transshipment hubs, Transportation Science, 45, 4, 483-504, (2011)
[146] Zhen, L.; Lee, L. H.; Chew, E. P., A decision model for berth allocation under uncertainty, European Journal of Operational Research, 212, 1, 54-68, (2011)
[147] Zhou, P.-F.; Kang, H.-G., Study on berth and quay-crane allocation under stochastic environments in container terminal, Systems Engineering - Theory & Practice, 28, 1, 161-169, (2008)
[148] Zhu, Y.; Lim, A., Crane scheduling with non-crossing constraint, Journal of the Operational Research Society, 57, 12, 1464-1471, (2006) · Zbl 1123.90042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.