×

A soft-photon theorem for the Maxwell-Lorentz system. (English) Zbl 1431.78003

Summary: For the coupled system of classical Maxwell-Lorentz equations, we show that \(\mathfrak{F}(\hat{x}, t) = \lim_{| x | \rightarrow \infty} | x |^2 F(x, t)\) and \(\mathcal{F}(\hat{k}, t) = \lim_{| k | \rightarrow 0} | k | \hat{F}(k, t)\), where \(F\) is the Faraday tensor, \( \hat{F}\) is its Fourier transform in space, and \(\hat{x} := \frac{x}{| x |}\), is independent of \(t\). We combine this observation with the scattering theory for the Maxwell-Lorentz system due to A. Komech and H. Spohn [Commun. Partial Differ. Equations 25, No. 3–4, 559–584 (2000; Zbl 0970.35149)], which gives the asymptotic decoupling of \(F\) into the scattered radiation \(F_{sc, \pm }\) and the soliton field \(F_{v_{\pm \infty}}\) depending on the asymptotic velocity \(v_{ \pm \infty }\) of the electron at large positive (+), respectively, negative \((-)\) times. This gives a soft-photon theorem of the form \(\mathcal{F}_{\text{sc}, +}(\hat{k}) - \mathcal{F}_{\text{sc}, -}(\hat{k}) = -(\mathcal{F}_{v_{+ \infty}}(\hat{k}) - \mathcal{F}_{v_{- \infty}}(\hat{k}))\), and analogously for \(\mathfrak{F}\), which links the low-frequency part of the scattered radiation to the change of the electron’s velocity. Implications for the infrared problem in QED are discussed in the Conclusions.
©2019 American Institute of Physics

MSC:

78A25 Electromagnetic theory (general)
78A40 Waves and radiation in optics and electromagnetic theory
78A35 Motion of charged particles
78A45 Diffraction, scattering
81V10 Electromagnetic interaction; quantum electrodynamics
35Q60 PDEs in connection with optics and electromagnetic theory
35B40 Asymptotic behavior of solutions to PDEs
78M35 Asymptotic analysis in optics and electromagnetic theory
78A60 Lasers, masers, optical bistability, nonlinear optics

Citations:

Zbl 0970.35149
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Bloch, F.; Nordsieck, A., Note on the radiation field of the electron, Phys. Rev., 52, 54-59 (1937) · Zbl 0017.23504
[2] Bloch, F.; Nordsieck, A., The low frequency radiation of a scattered electron, Phys. Rev., 52, 59-62 (1937) · Zbl 0017.23505
[3] Buchholz, D., The physical state space of quantum electrodynamics, Commun. Math. Phys., 85, 49-71 (1982) · Zbl 0506.46052
[4] Buchholz, D.; Roberts, J. E., New light on infrared problems: Sectors, statistics, symmetries and spectrum, Commun. Math. Phys., 330, 935-972 (2014) · Zbl 1296.81044
[5] Cadamuro, D.; Dybalski, W., Curing velocity superselection in non-relativistic QED by restriction to a lightcone
[6] Chen, T.; Fröhlich, J.; Pizzo, A., Infraparticle scattering states in non-relativistic QED. II. Mass shell properties, J. Math. Phys., 50, 012103 (2009) · Zbl 1189.81240
[7] Chen, T.; Fröhlich, J.; Pizzo, A., Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm, Commun. Math. Phys., 294, 761-825 (2010) · Zbl 1208.81211
[8] Di Piazza, A., Analytical infrared limit of nonlinear Thomson scattering including radiation reaction, Phys. Rev. B, 782, 559-565 (2018) · Zbl 1404.78021
[9] Dybalski, W., From Faddeev-Kulish to LSZ. Towards a non-perturbative description of colliding electrons, Nucl. Phys. B, 925, 455-469 (2017) · Zbl 1375.81239
[10] Fröhlich, J., On the infrared problem in a model of scalar electrons and massless, scalar bosons, Ann. Inst. H. Poincaré Sect. A, 19, 1-103 (1973) · Zbl 1216.81151
[11] Fröhlich, J., Existence of dressed one electron states in a class of persistent models, Fortschr. Phys., 22, 158-198 (1974)
[12] Fröhlich, J.; Morchio, G.; Strocchi, F., Infrared problem and spontaneous breaking of the Lorentz group in QED, Phys. Lett. B, 89, 61-64 (1979)
[13] Fröhlich, J.; Pizzo, A., Renormalized electron mass in non-relativistic QED, Commun. Math. Phys., 294, 439-470 (2010) · Zbl 1208.81212
[14] Hartenstein, V., On the Maxwell-Lorentz dynamics of point charges (2018), Ludwig-Maximilians-Universität München
[15] Herdegen, A., Asymptotic structure of electrodynamics revisited, Lett. Mat. Phys., 107, 1439-1470 (2017) · Zbl 1409.70015
[16] Hoang, D. V., Soliton solutions and scattering theory of Maxwell-Newton equations (2018), Ludwig-Maximilians-Universität München
[17] Komech, A.; Spohn, H., Long-time asymptotics for coupled Maxwell-Lorentz equations, Commun. PDE, 25, 559-584 (2000) · Zbl 0970.35149
[18] Könnenberg, M.; Matte, O., The mass shell in the semi-relativistic Pauli-Fierz model, Ann. Henri Poincaré, 15, 863-915 (2015) · Zbl 1294.81047
[19] Kulish, P. P.; Faddeev, L. D., Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys., 4, 2, 745-757 (1970), 10.1007/BF01066485; Kulish, P. P.; Faddeev, L. D., Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys., 4, 2, 745-757 (1970), 10.1007/BF01066485; · Zbl 0197.26201
[20] Prabhu, K., Conservation of asymptotic charges from past to future null infinity: Maxwell fields, JHEP, 2018, 113 · Zbl 1402.83034
[21] Reed, M.; Simon, B., Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness (1980), Academic Press
[22] Spohn, H., Dynamics of Charged Particles and Their Radiation Fields (2004), Cambridge · Zbl 1078.81004
[23] Strominger, A., Lectures on the Infrared Structure of Gravity and Gauge Theory (2018), Princeton University Press · Zbl 1408.83003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.