Elbjaoui, H.; Zerouali, E. H. Local spectral theory for \(2\times 2\) operator matrices. (English) Zbl 1060.47003 Int. J. Math. Math. Sci. 2003, No. 42, 2667-2672 (2003). Authors’ abstract: We discuss the spectral properties of the operator \(M_C\in{\mathfrak I}(X\oplus Y)\), defined by \(M_C= {AC\choose 0B}\), where \(A\in{\mathfrak I}(X)\), \(B\in{\mathfrak I}(Y)\), \(C\in{\mathfrak I}(Y,X)\), and \(X\), \(Y\) are complex Banach spaces. We prove that \((S_{A^*}\cap S_B)\cup\sigma(M_C)= \sigma(A)\cup\sigma(B)\) for all \(C\in{\mathfrak I}(Y,X)\). This allows us to give a partial positive answer to Question 3 of H.–K. Du and P. Jin [Proc. Am. Math. Soc. 121, No. 3, 761–766 (1994; Zbl 0814.47016)] and generalizations of some results of M. Houimdi and H. Zguitti [Acta Math. Vietnam. 25, No. 2, 137–144 (2000; Zbl 0970.47003)]. Some applications to the similarity problem are also given. Reviewer: Mahmoud Kutkut (Amman) Cited in 12 Documents MSC: 47A10 Spectrum, resolvent Keywords:Banach space; linear operator; spectrum; operator matrix Citations:Zbl 0814.47016; Zbl 0970.47003 PDF BibTeX XML Cite \textit{H. Elbjaoui} and \textit{E. H. Zerouali}, Int. J. Math. Math. Sci. 2003, No. 42, 2667--2672 (2003; Zbl 1060.47003) Full Text: DOI EuDML OpenURL