Volos, Christos; Maaita, Jamal-Odysseas; Viet-Thanh Pham; Jafari, Sajad Hidden attractors in a dynamical system with a sine function. (English) Zbl 1507.37050 Wang, Xiong (ed.) et al., Chaotic systems with multistability and hidden attractors. Cham: Springer. Emerg. Complex. Comput. 40, 459-487 (2021). MSC: 37D45 34C28 PDF BibTeX XML Cite \textit{C. Volos} et al., Emerg. Complex. Comput. 40, 459--487 (2021; Zbl 1507.37050) Full Text: DOI OpenURL
Goh, S. M.; Noorani, M. S. M.; Hashim, I. On solving the chaotic Chen system: A new time marching design for the variational iteration method using Adomian’s polynomial. (English) Zbl 1190.65189 Numer. Algorithms 54, No. 2, 245-260 (2010). MSC: 65P20 37D45 65L06 37M05 PDF BibTeX XML Cite \textit{S. M. Goh} et al., Numer. Algorithms 54, No. 2, 245--260 (2010; Zbl 1190.65189) Full Text: DOI OpenURL
Li, Yuxia; Liu, Xinzhi; Zhang, Hongtao A new unified chaotic system and its impulsive synchronization. (English) Zbl 1177.37037 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 16, No. 4, 573-587 (2009). Reviewer: Tomas Persson (Warszawa) MSC: 37D45 34C28 PDF BibTeX XML Cite \textit{Y. Li} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 16, No. 4, 573--587 (2009; Zbl 1177.37037) OpenURL
Noorani, M. S. M.; Hashim, I.; Ahmad, R.; Bakar, S. A.; Ismail, E. S.; Zakaria, A. M. Comparing numerical methods for the solutions of the Chen system. (English) Zbl 1131.65101 Chaos Solitons Fractals 32, No. 4, 1296-1304 (2007). MSC: 65P20 37D45 37M25 37M05 PDF BibTeX XML Cite \textit{M. S. M. Noorani} et al., Chaos Solitons Fractals 32, No. 4, 1296--1304 (2007; Zbl 1131.65101) Full Text: DOI OpenURL
Li, Yuxia; Tang, Kit-sang; Chen, Guanrong; Su, Xuecheng Hyperchaotic Chen’s system and ists generation. (English) Zbl 1130.37017 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 14, No. 1, 97-102 (2007). MSC: 37D45 65P20 34C28 PDF BibTeX XML Cite \textit{Y. Li} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 14, No. 1, 97--102 (2007; Zbl 1130.37017) OpenURL
Čelikovský, Sergej Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization. (English) Zbl 1249.93090 Kybernetika 40, No. 6, 649-664 (2004). MSC: 93C10 93D20 PDF BibTeX XML Cite \textit{S. Čelikovský}, Kybernetika 40, No. 6, 649--664 (2004; Zbl 1249.93090) Full Text: EuDML Link OpenURL
Čelikovský, Sergej; Chen, Guanrong On a generalized Lorenz canonical form of chaotic systems. (English) Zbl 1043.37023 Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, No. 8, 1789-1812 (2002). MSC: 37D45 34C28 34H05 93B10 37N05 93C10 PDF BibTeX XML Cite \textit{S. Čelikovský} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, No. 8, 1789--1812 (2002; Zbl 1043.37023) Full Text: DOI OpenURL