Rogers, C.; Schief, W. K. On a Boussinesq capillarity system: Hamiltonian reductions and associated quartic geometries. (English) Zbl 1290.35207 Stud. Appl. Math. 132, No. 1, 1-12 (2014). The authors deal with the nonlinear Boussinesq capillarity system which may be derived from the L. K. Antanovskii model [“Microscale theory of surface tension”, Phys. Rev. E. 54, 6285–6290 (1996)] in one case of one-parameter free-energy laws. The application of a quartic ansatz for the density distribution leads to Hamiltonian reductions associated with isopycnal geometries: in \(2+1\) dimension with time-modulated Cassini ovals and in \(3+1\) dimension with time-modulated “red blood cell” geometries [B. Angelov and I. M. Mladenov, in: Proceedings of the international conference on geometry, integrability and quantization, Varna, Bulgaria, 1999. Sofia: Coral Press Scientific Publishing. 27–46 (2000; Zbl 0970.92009)]. Thus it is shown that the considered nonlinear Boussinesq-type capillarity model system allows exact reduction to coupled Hamiltonian subsystems. Reviewer: Boris V. Loginov (Ul’yanovsk) Cited in 2 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 35Q55 NLS equations (nonlinear Schrödinger equations) 76D45 Capillarity (surface tension) for incompressible viscous fluids 76A05 Non-Newtonian fluids Keywords:Boussinesq-type capillarity; exact reductions to Hamiltonian subsystems Citations:Zbl 0970.92009 PDF BibTeX XML Cite \textit{C. Rogers} and \textit{W. K. Schief}, Stud. Appl. Math. 132, No. 1, 1--12 (2014; Zbl 1290.35207) Full Text: DOI References: [1] Gibbs, Collected Works 5 (1948) [2] Ono, Molecular Theory of Surface Tension in Liquids (1960) · Zbl 0107.23501 [3] Antanovskii, Microscale theory of surface tension, Phys. Rev. E 54 pp 6285– (1996) [4] Angelov, Geometry, Integrability and Quantization (2000) [5] Antanovskii, A note on a capillarity model and the nonlinear Schrödinger equation, J. Phys. A: Math. Gen 30 pp L555– (1997) · Zbl 0918.35128 [6] Rogers, The resonant nonlinear Schrödinger equation via an integrable capillarity model, Il Nuovo Cimento 114B pp 1409– (1999) [7] Rogers, On a capillarity model and the Davey-Stewartson I system. Quasi doubly-periodic wave patterns, Il Nuovo Cimento 122B pp 105– (2007) [8] Rogers, A resonant Davey-Stewartson capillarity model system: soliton generation, Int. J. Nonlinear Sci. Num. Simul. 10 pp 397– (2009) · Zbl 06942413 [9] Liang, Painlevé analysis and exact solutions of the resonant Davey-Stewartson system, Phys. Lett. A 374 pp 110– (2009) · Zbl 1235.37018 [10] Rogers, On a 2+1-dimensional Whitham-Broer-Kaup system. A resonant NLS connection, Stud. Appl. Math. 127 pp 141– (2011) · Zbl 1236.35171 [11] Belashov, Theory, Simulation, Applications (2005) [12] Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys. 40 pp 322– (1926) · JFM 52.0969.06 [13] Rogers, Elliptic warm core theory: the pulsrodon, Phys. Lett. 138A pp 267– (1989) [14] Ray, Nonlinear superposition law for generalized Ermakov systems, Phys. Lett. 78A pp 4– (1980) [15] Ray, Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion, J. Math. Phys. 21 pp 1583– (1980) · Zbl 0445.70029 [16] Rogers, On 2+1-dimensional Ermakov systems, J. Phys. A: Math. Gen. 26 pp 2625– (1993) · Zbl 0787.35104 [17] Rogers, Multi-component Ermakov systems: Structure and linearization, J. Math. Anal. Appl. 198 pp 194– (1996) · Zbl 0849.34008 [18] Schief, Ermakov systems of arbitrary order and dimension: Structure and linearisation, J. Phys. A: Math. Gen. 29 pp 903– (1996) · Zbl 0916.34016 [19] Rogers, Ermakov-Ray-Reid systems in 2+1-dimensional rotating shallow water theory, Stud. Appl. Math. 125 pp 275– (2010) [20] Rogers, Ermakov-Ray-Reid systems in nonlinear optics, J. Phys. A: Math. Theor 43 pp 455214– (2010) · Zbl 1207.78034 [21] Rogers, On a 2+1-dimensional Madelung system with logarithmic and with Bohm quantum potentials: Ermakov reduction, Physica Scripta 84 pp 045004– (2011) · Zbl 1264.35227 [22] Rogers, The pulsrodon in 2+1-dimensional magnetogasdynamics: Hamiltonian structure and integrability, J. Math. Phys 52 pp 083701– (2011) · Zbl 1272.76200 [23] Rogers, On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system, Nonlinearity 24 pp 3165– (2011) · Zbl 1256.35111 [24] Lawrence, A Catalog of Special Curves (1972) · Zbl 0257.50002 [25] Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol 26 pp 61– (1970) [26] Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforschung C 28 pp 693– (1973) [27] van Hemmen, Elementary excitations of biomembranes: differential geometry and undulations in elastic surfaces, Phys. Rep. 444 pp 51– (2007) [28] Boruvka, Generalization of the classical theory of capillarity, J. Chem. Phys 66 pp 5464– (1977) [29] Goursat, Étude des surfaces qui admettent tous les plans de symétrie d’un polyèdre régulier, Annales scientifiques de l’École Normale Supérieure Sér. 3 4 pp 159– (1887) [30] R. Ferréol http://www.mathcurve.com/surfaces/goursat/goursat.shtml This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.