Rogers, C.; Schief, W. K. On a Boussinesq capillarity system: Hamiltonian reductions and associated quartic geometries. (English) Zbl 1290.35207 Stud. Appl. Math. 132, No. 1, 1-12 (2014). The authors deal with the nonlinear Boussinesq capillarity system which may be derived from the L. K. Antanovskii model [“Microscale theory of surface tension”, Phys. Rev. E. 54, 6285–6290 (1996)] in one case of one-parameter free-energy laws. The application of a quartic ansatz for the density distribution leads to Hamiltonian reductions associated with isopycnal geometries: in \(2+1\) dimension with time-modulated Cassini ovals and in \(3+1\) dimension with time-modulated “red blood cell” geometries [B. Angelov and I. M. Mladenov, in: Proceedings of the international conference on geometry, integrability and quantization, Varna, Bulgaria, 1999. Sofia: Coral Press Scientific Publishing. 27–46 (2000; Zbl 0970.92009)]. Thus it is shown that the considered nonlinear Boussinesq-type capillarity model system allows exact reduction to coupled Hamiltonian subsystems. Reviewer: Boris V. Loginov (Ul’yanovsk) Cited in 4 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 35Q55 NLS equations (nonlinear Schrödinger equations) 76D45 Capillarity (surface tension) for incompressible viscous fluids 76A05 Non-Newtonian fluids Keywords:Boussinesq-type capillarity; exact reductions to Hamiltonian subsystems Citations:Zbl 0970.92009 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J.W.Gibbs, Collected Works, Vol. 5, Yale University Press, New Haven, CT (1948). [2] S.Ono and S.Kondo, Molecular Theory of Surface Tension in Liquids, Springer‐Verlag, Berlin (1960). [3] L.K.Antanovskii, Microscale theory of surface tension, Phys. Rev. E. 54:6285-6290 (1996). [4] B.Angelov and I.M.Mladenov, On the geometry of red blood cells, in Geometry, Integrability and Quantization, (I.M.Mladenov (ed.) and G.L.Naber (ed.), Eds.), September 1‐10, 1999, Varna, Bulgaria, Coral Press, Sofia, 2000. · Zbl 0970.92009 [5] L.K.Antanovskii, C.Rogers, and W.K.Schief, A note on a capillarity model and the nonlinear Schrödinger equation, J. Phys. A: Math. Gen. 30:L555-L557 (1997). · Zbl 0918.35128 [6] C.Rogers and W.K.Schief, The resonant nonlinear Schrödinger equation via an integrable capillarity model, Il Nuovo Cimento114B:1409-1412 (1999). [7] C.Rogers, K.W.Chow, and R.Conte, On a capillarity model and the Davey‐Stewartson I system. Quasi doubly‐periodic wave patterns, Il Nuovo Cimento122B:105-111 (2007). [8] C.Rogers, L.P.Yip, and K.W.Chow, A resonant Davey‐Stewartson capillarity model system: soliton generation, Int. J. Nonlinear Sci. Num. Simul.10:397-405 (2009). [9] Z.F.Liang and X.Y.Tang, Painlevé analysis and exact solutions of the resonant Davey‐Stewartson system, Phys. Lett. A374:110-115 (2009). · Zbl 1235.37018 [10] C.Rogers and O.K.Pashaev, On a 2+1‐dimensional Whitham‐Broer‐Kaup system. A resonant NLS connection, Stud. Appl. Math.127:141-152 (2011). · Zbl 1236.35171 [11] V. YuBelashov and S.V.Vladimirov, Solitary Waves in Dispersive Complex Media. Theory, Simulation, Applications, Springer Verlag, Berlin, Heidelberg (2005). · Zbl 1087.76002 [12] E.Madelung, Quantentheorie in hydrodynamischer Form, Z. Phys.40:322-326 (1926). · JFM 52.0969.06 [13] C.Rogers, Elliptic warm core theory: the pulsrodon, Phys. Lett.138A:267-273 (1989). [14] J.R.Ray, Nonlinear superposition law for generalized Ermakov systems, Phys. Lett.78A:4-6 (1980). [15] J.R.Ray and J.L.Reid, Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion, J. Math. Phys.21:1583-1587 (1980). · Zbl 0445.70029 [16] C.Rogers, C.Hoenselaers, and J.R.Ray, On 2+1‐dimensional Ermakov systems, J. Phys. A: Math. Gen.26:2625-2633 (1993). · Zbl 0787.35104 [17] C.Rogers and W.K.Schief, Multi‐component Ermakov systems: Structure and linearization, J. Math. Anal. Appl.198:194-220 (1996). · Zbl 0849.34008 [18] W.K.Schief, C.Rogers, and A.Bassom, Ermakov systems of arbitrary order and dimension: Structure and linearisation, J. Phys. A: Math. Gen.29:903-911 (1996). · Zbl 0916.34016 [19] C.Rogers and H.An, Ermakov‐Ray‐Reid systems in 2+1‐dimensional rotating shallow water theory, Stud. Appl. Math.125:275-299 (2010). · Zbl 1209.37104 [20] C.Rogers, B.Malomed, K.W.Chow, and H.An, Ermakov‐Ray‐Reid systems in nonlinear optics, J. Phys. A: Math. Theor. 43:455214 (15 pp) (2010). · Zbl 1207.78034 [21] C.Rogers and H.An, On a 2+1‐dimensional Madelung system with logarithmic and with Bohm quantum potentials: Ermakov reduction, Physica Scripta84:045004 (7pp) (2011). · Zbl 1264.35227 [22] C.Rogers and W.K.Schief, The pulsrodon in 2+1‐dimensional magnetogasdynamics: Hamiltonian structure and integrability, J. Math. Phys. 52:083701 (20 pp) (2011). · Zbl 1272.76200 [23] C.Rogers and W.K.Schief, On the integrability of a Hamiltonian reduction of a 2+1‐dimensional non‐isothermal rotating gas cloud system, Nonlinearity24:3165-3178 (2011). · Zbl 1256.35111 [24] J.D.Lawrence, A Catalog of Special Curves, Dover Publications, New York (1972). · Zbl 0257.50002 [25] P.B.Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol. 26:61-81 (1970). [26] W.Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforschung C28:693-703 (1973). [27] J.L.van Hemmen and C.Leibold, Elementary excitations of biomembranes: differential geometry and undulations in elastic surfaces, Phys. Rep.444:51-99 (2007). [28] L.Boruvka and A.W.Neumann, Generalization of the classical theory of capillarity, J. Chem. Phys. 66:5464-5476 (1977). [29] É.Goursat, Étude des surfaces qui admettent tous les plans de symétrie d’un polyèdre régulier, Annales scientifiques de l’École Normale Supérieure Sér. 34:159-200 (1887). · JFM 19.0781.03 [30] R.Ferréol, http://www.mathcurve.com/surfaces/goursat/goursat.shtml (2011). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.