Liu, Chein-Shan; Lee, Tsung-Lin A new family of generalized quadrature methods for solving nonlinear equations. (English) Zbl 07539555 Asian-Eur. J. Math. 15, No. 3, Article ID 2250044, 11 p. (2022). MSC: 65-XX 41A25 65D99 65H05 PDF BibTeX XML Cite \textit{C.-S. Liu} and \textit{T.-L. Lee}, Asian-Eur. J. Math. 15, No. 3, Article ID 2250044, 11 p. (2022; Zbl 07539555) Full Text: DOI OpenURL
Chicharro, Francisco I.; Cordero, Alicia; Martínez, Tobías H.; Torregrosa, Juan R. Mean-based iterative methods for solving nonlinear chemistry problems. (CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems.) (English) Zbl 1432.92115 J. Math. Chem. 58, No. 3, 555-572 (2020). MSC: 92E20 65H05 PDF BibTeX XML Cite \textit{F. I. Chicharro} et al., J. Math. Chem. 58, No. 3, 555--572 (2020; Zbl 1432.92115) Full Text: DOI OpenURL
Argyros, Ioannis K.; George, Santhosh Ball convergence for Traub-Steffensen like methods in Banach space. (English) Zbl 07644111 An. Univ. Vest Timiș., Ser. Mat.-Inform. 53, No. 2, 3-16 (2015). MSC: 65G99 65D99 47J25 45J05 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{S. George}, An. Univ. Vest Timiș., Ser. Mat.-Inform. 53, No. 2, 3--16 (2015; Zbl 07644111) Full Text: DOI OpenURL
Jaiswal, J. P. Some class of third- and fourth-order iterative methods for solving nonlinear equations. (English) Zbl 1442.65086 J. Appl. Math. 2014, Article ID 817656, 17 p. (2014). MSC: 65H05 PDF BibTeX XML Cite \textit{J. P. Jaiswal}, J. Appl. Math. 2014, Article ID 817656, 17 p. (2014; Zbl 1442.65086) Full Text: DOI arXiv OpenURL
Soleymani, F. A second derivative-free eighth-order nonlinear equation solver. (English) Zbl 1291.65153 Nonlinear Stud. 19, No. 1, 79-86 (2012). MSC: 65H05 65Y20 PDF BibTeX XML Cite \textit{F. Soleymani}, Nonlinear Stud. 19, No. 1, 79--86 (2012; Zbl 1291.65153) OpenURL
Darvishi, M. T. A two-step high order Newton-like method for solving systems of nonlinear equations. (English) Zbl 1210.65101 Int. J. Pure Appl. Math. 57, No. 4, 543-555 (2009). Reviewer: Yanlai Chen (North Dartmouth) MSC: 65H10 PDF BibTeX XML Cite \textit{M. T. Darvishi}, Int. J. Pure Appl. Math. 57, No. 4, 543--555 (2009; Zbl 1210.65101) OpenURL
Parhi, S. K.; Gupta, D. K. A sixth order method for nonlinear equations. (English) Zbl 1154.65327 Appl. Math. Comput. 203, No. 1, 50-55 (2008). MSC: 65H05 PDF BibTeX XML Cite \textit{S. K. Parhi} and \textit{D. K. Gupta}, Appl. Math. Comput. 203, No. 1, 50--55 (2008; Zbl 1154.65327) Full Text: DOI OpenURL
Lukić, Tibor; Ralević, Nebojša M. Geometric mean Newton’s method for simple and multiple roots. (English) Zbl 1154.65032 Appl. Math. Lett. 21, No. 1, 30-36 (2008). Reviewer: Jiří Vaníček (Praha) MSC: 65H05 PDF BibTeX XML Cite \textit{T. Lukić} and \textit{N. M. Ralević}, Appl. Math. Lett. 21, No. 1, 30--36 (2008; Zbl 1154.65032) Full Text: DOI OpenURL
Thukral, R. Introduction to a Newton-type method for solving nonlinear equations. (English) Zbl 1154.65034 Appl. Math. Comput. 195, No. 2, 663-668 (2008). Reviewer: Jiří Vaníček (Praha) MSC: 65H05 PDF BibTeX XML Cite \textit{R. Thukral}, Appl. Math. Comput. 195, No. 2, 663--668 (2008; Zbl 1154.65034) Full Text: DOI OpenURL
Homeier, H. H. H. On Newton-type methods with cubic convergence. (English) Zbl 1063.65037 J. Comput. Appl. Math. 176, No. 2, 425-432 (2005). MSC: 65H05 PDF BibTeX XML Cite \textit{H. H. H. Homeier}, J. Comput. Appl. Math. 176, No. 2, 425--432 (2005; Zbl 1063.65037) Full Text: DOI OpenURL