Acharya, Bobby Samir; Braun, Andreas P.; Svanes, Eirik Eik; Valandro, Roberto Counting associatives in compact \(G_2\) orbifolds. (English) Zbl 1414.83078 J. High Energy Phys. 2019, No. 3, Paper No. 138, 25 p. (2019). Summary: We describe a class of compact \(G_2\) orbifolds constructed from non-symplectic involutions of K3 surfaces. Within this class, we identify a model for which there are infinitely many associative submanifolds contributing to the effective superpotential of \(M\)-theory compactifications. Under a chain of dualities, these can be mapped to \(F\)-theory on a Calabi-Yau fourfold, and we find that they are dual to an example studied by R. Donagi et al. [Mod. Phys. Lett. A 11, No. 27, 2199–2211 (1996; Zbl 1022.81675)]. Finally, we give two different descriptions of our main example and the associative submanifolds as a twisted connected sum. Cited in 12 Documents MSC: 83E30 String and superstring theories in gravitational theory 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory 14J28 \(K3\) surfaces and Enriques surfaces 14J32 Calabi-Yau manifolds (algebro-geometric aspects) 53Z05 Applications of differential geometry to physics Keywords:string duality; F-theory; M-theory; D-branes Citations:Zbl 1022.81675 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE]. [2] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys.B 474 (1996) 343 [hep-th/9604030] [INSPIRE]. · Zbl 0925.32012 · doi:10.1016/0550-3213(96)00283-0 [3] R. Donagi, A. Grassi and E. Witten, A nonperturbative superpotential with E8symmetry, Mod. Phys. Lett.A 11 (1996) 2199 [hep-th/9607091] [INSPIRE]. · Zbl 1022.81675 · doi:10.1142/S0217732396002198 [4] R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys.187 (1997) 679 [hep-th/9701162] [INSPIRE]. · Zbl 0919.14010 · doi:10.1007/s002200050154 [5] G. Curio and D. Lüst, A class of N = 1 dual string pairs and its modular superpotential, Int. J. Mod. Phys.A 12 (1997) 5847 [hep-th/9703007] [INSPIRE]. · Zbl 0902.53054 · doi:10.1142/S0217751X97003066 [6] B.S. Acharya, N = 1 heterotic/M theory duality and Joyce manifolds, Nucl. Phys.B 475 (1996) 579 [hep-th/9603033] [INSPIRE]. · Zbl 0925.81182 · doi:10.1016/0550-3213(96)00326-4 [7] B.S. Acharya and E. Witten, Chiral fermions from manifolds of G2holonomy, hep-th/0109152 [INSPIRE]. [8] S. Gukov, S.-T. Yau and E. Zaslow, Duality and fibrations on G2manifolds, hep-th/0203217 [INSPIRE]. · Zbl 1069.81561 [9] A.P. Braun and S. Schäfer-Nameki, Compact, Singular G2-Holonomy Manifolds and M/Heterotic/F-Theory Duality, JHEP04 (2018) 126 [arXiv:1708.07215] [INSPIRE]. · Zbl 1390.83330 · doi:10.1007/JHEP04(2018)126 [10] A.P. Braun, M. Del Zotto, J. Halverson, M. Larfors, D.R. Morrison and S. Schäfer-Nameki, Infinitely many M2-instanton corrections to M-theory on G2-manifolds, JHEP09 (2018) 077 [arXiv:1803.02343] [INSPIRE]. · Zbl 1398.83101 · doi:10.1007/JHEP09(2018)077 [11] D. Joyce, Compact Manifolds With Special Holonomy, Oxford University Press, (2000). · Zbl 1027.53052 [12] B.S. Acharya, M theory, Joyce orbifolds and superYang-Mills, Adv. Theor. Math. Phys.3 (1999) 227 [hep-th/9812205] [INSPIRE]. · Zbl 1024.81041 · doi:10.4310/ATMP.1999.v3.n2.a3 [13] F. Reidegeld, G2-orbifolds from K3 surfaces with ADE-singularities, arXiv:1512.05114 [INSPIRE]. · Zbl 1329.14084 [14] F. Reidegeld, K3 surfaces with a pair of commuting non-symplectic involutions, arXiv:1809.07501. · Zbl 1329.14084 [15] W. Barth, C. Peters and A. Ven, Compact complex surfaces, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete, (1984). · Zbl 0718.14023 [16] P.S. Aspinwall, K3 surfaces and string duality, in Differential geometry inspired by string theory, (1996), pp. 421-540, hep-th/9611137 [INSPIRE]. [17] V.V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of type K3, Usp. Mat. Nauk31 (1976) 223. [18] V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv.14 (1980) 103. · Zbl 0427.10014 · doi:10.1070/IM1980v014n01ABEH001060 [19] V. Alexeev and V.V. Nikulin, Classification of log del Pezzo surfaces of index ≤ 2, math/0406536. · Zbl 1097.14001 [20] R. Harvey and H.B. Lawson, Calibrated geometries, Acta Mathematica148 (1982) 47. · Zbl 0584.53021 · doi:10.1007/BF02392726 [21] K. Becker, M. Becker, D.R. Morrison, H. Ooguri, Y. Oz and Z. Yin, Supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4 folds, Nucl. Phys.B 480 (1996) 225 [hep-th/9608116] [INSPIRE]. · Zbl 0925.14009 · doi:10.1016/S0550-3213(96)00491-9 [22] C. Borcea, K3 surfaces with involution and mirror pairs of Calabi-Yau manifolds, [INSPIRE]. · Zbl 0939.14021 [23] C. Voisin, Miroirs et involutions sur les surfaces K3, Institut des Hautes Etudes Scientifiques (IHES), (1993). [24] T. Bridgeland, A. King and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Am. Math. Soc.14 (2001) 535 [INSPIRE]. · Zbl 0966.14028 · doi:10.1090/S0894-0347-01-00368-X [25] T. Shioda et al., On the mordell-weil lattices, Rikkyo Daigaku sugaku zasshi39 (1990) 211. · Zbl 0725.14017 [26] S. Hosono, M.-H. Saito and J. Stienstra, On mirror symmetry conjecture for Schoen’s Calabi-Yau 3-folds, alg-geom/9709027. · Zbl 0963.14016 [27] R. Donagi and K. Wendland, On orbifolds and free fermion constructions, J. Geom. Phys.59 (2009) 942 [arXiv:0809.0330] [INSPIRE]. · Zbl 1166.81033 · doi:10.1016/j.geomphys.2009.04.004 [28] I.V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci.81 (1996) 2599. · Zbl 0890.14024 · doi:10.1007/BF02362332 [29] P.S. Aspinwall and D.R. Morrison, String theory on K3 surfaces, Stud. Adv. Math.1 (1996) 703 [hep-th/9404151] [INSPIRE]. · Zbl 0931.14020 · doi:10.1090/amsip/001/27 [30] M. Gross, Special Lagrangian fibrations II: geometry, math/9809072. [31] M. Gross and P.M. Wilson, Large complex structure limits of K3 surfaces, J. Diff. Geom.55 (2000) 475. · Zbl 1027.32021 · doi:10.4310/jdg/1090341262 [32] A. Sen, Orientifold limit of F-theory vacua, Phys. Rev.D 55 (1997) R7345 [hep-th/9702165] [INSPIRE]. [33] A.P. Braun, R. Ebert, A. Hebecker and R. Valandro, Weierstrass meets Enriques, JHEP02 (2010) 077 [arXiv:0907.2691] [INSPIRE]. · Zbl 1270.81155 · doi:10.1007/JHEP02(2010)077 [34] A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math.565 (2003) 125. · Zbl 1043.53041 [35] A. Corti, M. Haskins, J. Nordström and T. Pacini, G2-manifolds and associative submanifolds via semi-Fano 3-folds, Duke Math. J.164 (2015) 1971 [arXiv:1207.4470] [INSPIRE]. · Zbl 1343.53044 · doi:10.1215/00127094-3120743 [36] A. Corti, M. Haskins, J. Nordström and T. Pacini, Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds, Geom. Topol.17 (2013) 1955. · Zbl 1273.14081 · doi:10.2140/gt.2013.17.1955 [37] A.P. Braun and M. Del Zotto, Towards Generalized Mirror Symmetry for Twisted Connected Sum G2Manifolds, JHEP03 (2018) 082 [arXiv:1712.06571] [INSPIRE]. · Zbl 1388.81640 · doi:10.1007/JHEP03(2018)082 [38] S. Donaldson and E. Segal, Gauge Theory in higher dimensions, II, arXiv:0902.3239 [INSPIRE]. · Zbl 1256.53038 [39] D. Joyce, Conjectures on counting associative 3-folds in G2-manifolds, arXiv:1610.09836 [INSPIRE]. · Zbl 1448.53061 [40] A. Haydys, G2 instantons and the Seiberg-Witten monopoles, arXiv:1703.06329 [INSPIRE]. · Zbl 1417.57027 [41] A. Doan and T. Walpuski, On counting associative submanifolds and Seiberg-Witten monopoles, arXiv:1712.08383 [INSPIRE]. · Zbl 1436.53035 [42] O.J. Ganor, A note on zeros of superpotentials in F-theory, Nucl. Phys.B 499 (1997) 55 [hep-th/9612077] [INSPIRE]. · Zbl 0934.81043 · doi:10.1016/S0550-3213(97)00311-8 [43] A.P. Braun and M. Del Zotto, Mirror Symmetry for G2-Manifolds: Twisted Connected Sums and Dual Tops, JHEP05 (2017) 080 [arXiv:1701.05202] [INSPIRE]. · Zbl 1380.83248 · doi:10.1007/JHEP05(2017)080 [44] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys.B 492 (1997) 152 [hep-th/9611230] [INSPIRE]. · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2 [45] O. DeWolfe and B. Zwiebach, String junctions for arbitrary Lie algebra representations, Nucl. Phys.B 541 (1999) 509 [hep-th/9804210] [INSPIRE]. · Zbl 0942.81054 · doi:10.1016/S0550-3213(98)00743-3 [46] O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p, q] 7-branes: Kac-Moody algebras and beyond, Adv. Theor. Math. Phys.3 (1999) 1835 [hep-th/9812209] [INSPIRE]. · Zbl 0967.81052 · doi:10.4310/ATMP.1999.v3.n6.a6 [47] H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, More on Dimension-4 Proton Decay Problem in F-theory — Spectral Surface, Discriminant Locus and Monodromy, Nucl. Phys.B 840 (2010) 304 [arXiv:1004.3870] [INSPIRE]. · Zbl 1206.81125 · doi:10.1016/j.nuclphysb.2010.07.011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.