Li, Zenghu; Xiong, Jie Continuous local time of a purely atomic immigration superprocess with dependent spatial motion. (English) Zbl 1128.60073 Stochastic Anal. Appl. 25, No. 6, 1273-1296 (2007). Summary: A purely atomic immigration superprocess with dependent spatial motion in the space of tempered measures is constructed as the unique strong solution of a stochastic integral equation driven by Poisson processes based on the excursion law of a Feller branching diffusion, which generalizes the work of D. A. Dawson and Z. Li [Probab. Theory Relat. Fields 127, No. 1, 37–61 (2003; Zbl 1038.60082)]. As an application of the stochastic equation, it is proved that the superprocess possesses a local time which is Hölder continuous of order \(\alpha \) for every \( \alpha < 1/2\). We establish two scaling limit theorems for the immigration superprocess, from which we derive scaling limits for the corresponding local time. Cited in 1 Document MSC: 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) 60G57 Random measures 60H20 Stochastic integral equations Keywords:dependent spatial motion; excursion; immigration; local time; Poisson random measure; scaling limit theorem; superprocess Citations:Zbl 1038.60082 PDF BibTeX XML Cite \textit{Z. Li} and \textit{J. Xiong}, Stochastic Anal. Appl. 25, No. 6, 1273--1296 (2007; Zbl 1128.60073) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1214/aop/1176995579 · Zbl 0391.60007 [2] Dawson , D.A. 1993 .Measure-Valued Markov Processes. Lecture Notes in Mathematics, 1541 . Springer-Verlag , Berlin , pp. 1 – 260 . · Zbl 0799.60080 [3] DOI: 10.1007/s00440-003-0278-y · Zbl 1038.60082 [4] Dawson D.A., Electronic Journal of Probability 6 pp 1– (2001) [5] DOI: 10.1023/B:JOTP.0000040293.67957.e3 · Zbl 1067.60085 [6] Dôku I., Scientiae Mathematicae Japonicae 64 pp 563– (2006) [7] Fu Z.F., Osaka Journal of Mathematics 41 pp 727– (2004) [8] Li Z.H., Chinese Journal of Contemporary Mathematics 25 pp 405– (2004) [9] DOI: 10.1007/s00440-003-0313-z · Zbl 1059.60076 [10] DOI: 10.1007/s10440-005-6696-3 · Zbl 1078.60068 [11] DOI: 10.1007/BF00532802 · Zbl 0484.60062 [12] Revuz D., Continuous Martingales and Brownian Motion. (1991) · Zbl 0731.60002 [13] Shiga T., Journal of Mathematics of Kyoto University 30 pp 245– (1990) [14] Walsh , J.B. 1986 .An Introduction to Stochastic Partial Differential Equations. Lecture Notes in Mathematics, 1180 . Springer-Verlag , Berlin , pp. 256 – 439 . [15] DOI: 10.1007/s004400050124 · Zbl 0882.60092 [16] DOI: 10.1080/07362999808809560 · Zbl 0913.60091 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.