The common root of the geometric conditions in Serrin’s lower semicontinuity theorem. (English) Zbl 1164.49004

The authors consider the functional \(F(u)=\int_{\Omega} f(x,u(x),Du(x))\,dx,\) where \(\Omega\) is an open set of \(\mathbb R^n\), \(u\in W^{1,1}_{loc} (\Omega; \mathbb R^n), Du \) is the approximate differential of u and \(f:\Omega \times \mathbb R \times \mathbb R^n \longrightarrow \mathbb R\) such that \(f(x,u(x),Du(x)) \) is measurable. They are interested in reconsidering the celebrated Serrin’s theorem on the l.s.c. of \(F\) with respect to \(L^1_{loc}(\Omega)-\)convergence, with the aim to obtain weaker condition to ensure the same result for \(F.\) Some results in the spirit of this program are obtained in M. Gori, F. Maggi, P. Marcellini, Differ. Integral Equ. 16, No. 1, 51-76 (2003; Zbl 1028.49012) and M. Gori, P. Marcellini, J. Convex Anal. 9, No.2, 475-502 (2002, Zbl 1019.49021). In this paper the authors consider the following condition (NCL condition): for all \((x,s)\in \Omega \times \mathbb R\) and every \(\xi \in \mathbb R^n, \nu \in S^{n-1}\) fixed, the function: \(\rho \longrightarrow f(x,s, \xi + \rho\nu)\) is a non constant function, and they prove (theorem 3) a result of l.s.c. with respect to \(L^1_{loc}(\Omega)-\)convergence for \(F\) when \(f(s,x,.)\) is convex, \(f(x,s,\xi)\geq 0\) and NCL condition is true. One of the main tecnical tool for the previous result is an approximation theorem for NCL and convex function (theorem 5). As the authors say, the NCL condition is equivalent to demicoercivity condition considered in G. Anzellotti, G. Buttazzo, G. Dal Maso, Nonlinear Anal., Theory Methods Appl. 10, 603-613 (1986; Zbl 0612.49008). The NCL condition is weaker than the following conditions: -\(f(x.s,.)\) strictly convex; -\(f_x, f_{\xi}, f_{x \xi}\) exist and are continuous, which enter (separately) in Serrin’s theorem.


49J45 Methods involving semicontinuity and convergence; relaxation
52A41 Convex functions and convex programs in convex geometry
Full Text: DOI


[1] Ambrosio, Rend. Accad. Naz. Sci. XL, Mem. Mat., 11, 1 (1987)
[2] Anzellotti, Nonlinear Anal., 10, 603 (1986)
[3] Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Res. Notes Math. Ser. 207. Harlow: Longman 1989 · Zbl 0669.49005
[4] Černý, Math. Z., 248, 689 (2001)
[5] Černý, J. Convex Anal., 9, 295 (2002)
[6] Dacorogna, B.: Direct methods in the Calculus of Variations. Berlin: Springer 1989 · Zbl 0703.49001
[7] Maso, Manuscr. Math., 30, 387 (1980)
[8] De Cicco, V., Leoni, G.: A chain rule in L^1(div;Ω) and its applications to lower semicontinuity. Calc. Var. (2003) · Zbl 1056.49019
[9] Giorgi, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., Rend., 74, 274 (1983)
[10] Eisen, Math. Z., 162, 241 (1978)
[11] Fonseca, Indiana Univ. Math. J., 49, 617 (2000)
[12] Fonseca, Proc. R. Soc. Edinb., Sect. A, Math., 131, 519 (2001)
[13] Fonseca, SIAM J. Math. Anal., 23, 1081 (1992)
[14] Fusco, N., Giannetti, F., Verde, A.: Remark on the L^1-lower semicontinuity for integral functionals in BV. Preprint · Zbl 1030.49014
[15] Gori, ESAIM, Control Optim. Calc. Var., 9, 135 (2003)
[16] Gori, Differ. Integral Equ., 16, 51 (2003)
[17] Gori, J. Convex Anal., 9, 295 (2002)
[18] Maggi, F.: On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) · Zbl 1084.49015
[19] Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften 130. New York: Springer 1966
[20] Pauc, C.Y.: La méthode métrique en calcul des variations. Paris: Hermann 1941 · JFM 67.1036.01
[21] Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series 28. Princeton: Princeton University Press 1970 · Zbl 0193.18401
[22] Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Die Grundlehren der mathematischen Wissenschaften 317. Berlin: Springer 1998
[23] Serrin, Trans. Am. Math. Soc., 101, 139 (1961)
[24] Tonelli, L.: Fondamenti di Calcolo delle Variazioni. Bologna: Zanichelli 1922 · JFM 48.0581.09
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.