Xu, Zhiting; Wang, Yuanfeng Oscillation and nonoscillation of certain second order quasilinear dynamic equations. (English) Zbl 1266.34145 Hiroshima Math. J. 42, No. 3, 385-409 (2012). The paper studies the oscillation and nonoscillation of the second order quasilinear dynamic equation \[ \big( r(t)\, |y^\Delta(t)|^{\alpha-1} y^\Delta(t) \big)^\Delta +f(t,y^\sigma(t))=0, \qquad t\in[t_0,\infty)_{\mathbb T}, \] where \({\mathbb T}\) is a time scale (any nonempty closed subset of \({\mathbb R}\)) with \(t_0\in{\mathbb T}\) and \([t_0,\infty)_{\mathbb T}:=[t_0,\infty)\cap{\mathbb T}\). The results extend the case of differential equations by J. Wang [Funkc. Ekvacioj, Ser. Int. 41, No. 1, 25–54 (1998; Zbl 1140.34356)] to arbitrary time scales, and also to the discrete case. The results also extend the case of \(f(t,y)=q(t)\,g(y)\) considered by S. R. Grace et al. [J. Appl. Math. Comput. 32, No. 1, 205–218 (2010; Zbl 1198.34194)]. Reviewer: Roman Šimon Hilscher (Brno) MSC: 34N05 Dynamic equations on time scales or measure chains 34K11 Oscillation theory of functional-differential equations Keywords:oscillation; nonoscillation; quasilinear dynamic equations; time scale; second order Citations:Zbl 1140.34356; Zbl 1198.34194 PDFBibTeX XMLCite \textit{Z. Xu} and \textit{Y. Wang}, Hiroshima Math. J. 42, No. 3, 385--409 (2012; Zbl 1266.34145) Full Text: DOI Euclid References: [1] R. P. Agarwal, D. O’Regan, S. H. Saker, Philos-type oscillation criteria for second order half-linear dynamic equations on time scales, Rocky Mountain J. Math., 37 (2007), 1085-1103. · Zbl 1139.34029 · doi:10.1216/rmjm/1187453098 [2] D. R. Anderson, Interval criteria for oscillation of nonlinear second-order dynamic equations on time scales, Nonlinear Analysis, 69 (2008), 4614-4623. · Zbl 1167.34008 · doi:10.1016/j.na.2007.11.017 [3] M. Bohner, L. Erbe, A. Peterson, Oscillation for nonlinear second order dynamic equations on a time scale. J. Math. Anal. Appl., 301 (2005), 491-507. · Zbl 1061.34018 · doi:10.1016/j.jmaa.2004.07.038 [4] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001. · Zbl 0978.39001 [5] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. · Zbl 1025.34001 [6] M. Bohner, S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 34 (2004), 1239-1253. · Zbl 1075.34028 · doi:10.1216/rmjm/1181069797 [7] L. Erbe, Oscillation crietria for second order linear equations on time scales, Can. Appl. Math. Quart., 9 (2001), 345-375. · Zbl 1050.39024 [8] L. Erbe, A. Peterson, Boundedness and oscillation for nionlinear dynamic equations on a time scale, Proc. Amer. Math. Soc., 132 (2003), 735-744. · Zbl 1055.39007 · doi:10.1090/S0002-9939-03-07061-8 [9] L. Erbe, A. Peterson, S. H. Saker, Oscillation criteria for second-order nonlinear dynamic equations on a time scale, J. London Math. Soc., 67 (2003), 701-714. · Zbl 1050.34042 · doi:10.1112/S0024610703004228 [10] S. R. Grace, R. P. Agarwal, B. Kaymakcalan, W. Sae-jie, Oscillation theorems for second order nonlinear dynamic equations, J. Appl. Math. Comput., 32 (2010), 205-218. · Zbl 1198.34194 · doi:10.1007/s12190-009-0244-7 [11] S. R. Grace, R. P. Agarwal, B. Kaymakcalan, W. Sae-jie, On the oscillation of certain second order nonlinear dynamic equations, Math. Comput. Modelling., 50 (2009), 273-286. · Zbl 1185.34041 · doi:10.1016/j.mcm.2008.12.007 [12] T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time sclaes, J. Math. Anal. Appl., 345 (2008), 166-185. · Zbl 1156.34022 · doi:10.1016/j.jmaa.2008.04.019 [13] S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56. · Zbl 0722.39001 · doi:10.1007/BF03323153 [14] B. Jia, Wong’s comparison theorem for second order linear dynamic equations on time scales, J. Math. Anal. Appl., 349 (2009), 556-567. · Zbl 1168.34026 · doi:10.1016/j.jmaa.2008.09.012 [15] B. Jia, L. Erbe, A. Peterson, New comparison theorem and oscillation theorems for second-order half-linear dynamic equations on time scales, Comput. Math. Appl., 56 (2008), 2744-2756. · Zbl 1165.34340 · doi:10.1016/j.camwa.2008.05.014 [16] A. D. Medico, Q. Kong, Kamenev-type and interval oscillation crietria for second-order linear differential equations on a measure chain, J. Math. Anal. Appl., 294 (2004), 621-643. · Zbl 1056.34050 · doi:10.1016/j.jmaa.2004.02.040 [17] A. D. Medico, Q. Kong, New Kamenev-type oscillation crietria for second-order differential equations on a measure chain, Comput. Math. Appl., 50 (2005), 1211-1230. · Zbl 1085.39014 · doi:10.1016/j.camwa.2005.07.002 [18] S.H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput., 148 (2004), 81-91. · Zbl 1045.39012 · doi:10.1016/S0096-3003(02)00829-9 [19] S.H. Saker, Oscillation crietria for second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math., 177 (2005), 375-387. · Zbl 1082.34032 · doi:10.1016/j.cam.2004.09.028 [20] J. Wang, On second-order quasilinear oscillations, Funkcialaj Ekvacioj, 41 (1998), 25-54. · Zbl 1140.34356 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.