Ultramodularity and copulas. (English) Zbl 1371.62050

The authors study ultramodular binary copulas and characterize the additive generators of Archimedean ultramodular binary copulas. M. Marinacci and L. Montrucchio [Math. Oper. Res. 30, No. 2, 311–332 (2005; Zbl 1082.52006)] showed that ultramodularity of real functions is a stronger verson of both convexity and supermodularity. The ultramodularity of a copula stands for the mutually stochastically decreasing with respect to each other of two random variables.
The \(n\)-ary aggregation function \(A: [0,1]^n \to [0, 1]\) (monotone non-decreasing with two boundary conditions \(A(0, 0, \dots, 0)=0\), \(A(1, 1, \dots, 1) =1)\) is ultramodular if for all \(x, y, z\in [0, 1]^n\) with \(x+y+z\in [0,1]^n\), \[ A(x+y+z)+A(x) \geq A(x+y) + A(x+z). \] J. H. B. Kemperman [Nederl. Akad. Wet., Proc., Ser. A 80, 313–331 (1977; Zbl 0384.28012)] characterized that an \(n\)-ary function is supermodular if and only if each of its two-dimensional sections is supermodular; Marinacci and Montrucchio [Zbl 1082.52006] stated that an \(n\)-ary function is ultramodular if and only if it is supermodular and each of its one-dimensional sections is convex. These two results show that there are equivalent ways to characterize ultramodularity by
(i) ultramodularity on each two-dimensional section of the function or by
(ii) supermodularity on each two-dimensional section and convexity on each one-dimensional section.
Well-known examples of supermodular aggregation functions are copulas, and each ultramodular copula is negative quadrant dependent. The authors [Inf. Sci. 181, No. 19, 4101–4111 (2011; Zbl 1258.03082)] characterized ultramodularity by the supermodularity from the composite function on each monotone non-decreasing supermodular functions.
Section 1 and Section 2 give a brief introduction and backgrounds on supermodularity and ultramodularity. Section 3 focuses on ultramodular binary copulas. Note that each associate copula is an ordinal sum of Archimedean copulas. Therefore each associative ultramodular copula is a trivial sum of Archimedean copulas. Theorem 3.1 shows that a twice differentiable Archimedean copula is ultramodular if and only if \(1/t^\prime\) is a convex function for the additive generator \(t: [0, 1] \to [0, \infty]\), Theorem 3.5 proves that all the one-dimensional sections of an Archimedean copula are concave if and only if \(t^{\prime}(0)=\infty\), \(t^{\prime}\) is finite on \((0, 1]\) and \(1/t^{\prime}\) is concave. Theorem 3.7 addresses twice differentiable horizontal or vertical generators \(f\). Convexity on \(1/f^{\prime}\) leads to ultramodularity of the following copulas \[ C_f(x, y) =\begin{cases} 0 & \text{if \(x=0\),}\\ x \cdot f^{-1}(\min ( (f(y)/x), f(0)) & \text{otherwise}. \end{cases} \]
\[ C^f(x, y) =\begin{cases} 0 & \text{if \(y=0\),}\\ y \cdot f^{-1}(\min ( (f(x)/y), f(0)) & \text{otherwise}. \end{cases} \]
Section 4 is devoted to construct copulas from Theorem 2.8, and Theorem 4.1 gives a copula from a continuous ultramodular aggregation function and 2-ary copulas as well as continuous monotone non-decreasing functions. The copulas constructed by Theorem 4.1 are non-symmetric. Example 4.2 lists 4 examples from literatures. The authors expect to construct higher dimensional copulas from this approach.
It would be more interesting to construct ultramodular copulas with applications in financial economics and physics among other scientific fields which are not supermodular.


62H05 Characterization and structure theory for multivariate probability distributions; copulas
26B25 Convexity of real functions of several variables, generalizations
26B35 Special properties of functions of several variables, Hölder conditions, etc.
62E10 Characterization and structure theory of statistical distributions
60E05 Probability distributions: general theory
62H10 Multivariate distribution of statistics
Full Text: DOI Euclid


[1] J. Avérous and J.-L. Dortet-Bernadet, Dependence for Archimedean copulas and aging properties of their generating functions , Sankhyā 66 (2004), 607-620. · Zbl 1193.62087
[2] R.E. Barlow and F. Proschan, Statistical theory of reliability and life testing , To Begin With, Silver Spring, 1981.
[3] G. Beliakov, A. Pradera and T. Calvo, Aggregation functions : A guide for practitioners , Springer, Heidelberg, 2007. · Zbl 1123.68124
[4] H.W. Block, W.S. Griffith and T.H. Savits, \(L\)-superadditive structure functions , Adv. Appl. Prob. 21 (1989), 919-929. · Zbl 0687.60077
[5] P. Capéraà and C. Genest, Spearman’s \(\rho\) is larger than Kendall’s \(\tau\) for positively dependent random variables, J. Nonparamet. Stat. 2 (1993), 183-194. · Zbl 1360.62294
[6] A.H. Clifford, Naturally totally ordered commutative semigroups , Amer. J. Math. 76 (1954), 631-646. · Zbl 0055.01503
[7] B. De Baets, H. De Meyer, J. Kalická and R. Mesiar, Flipping and cyclic shifting of binary aggregation functions , Fuzzy Sets Syst. 160 (2009), 752-765. · Zbl 1175.62002
[8] F. Durante and P. Jaworski, Invariant dependence structure under univariate truncation , Statistics 46 (2012), 263-277. · Zbl 1241.62083
[9] F. Durante, R. Mesiar, P.L. Papini and C. Sempi, \(2\)-increasing binary aggregation operators , Inform. Sci. 177 (2007), 111-129. · Zbl 1142.68541
[10] F. Durante, S. Saminger-Platz and P. Sarkoci, Rectangular patchwork for bivariate copulas and tail dependence , Comm. Stat. Theor. Meth. 38 (2009), 2515-2527. · Zbl 1170.62329
[11] F. Durante and C. Sempi, On the characterization of a class of binary operations on bivariate distribution functions , Publ. Math. Debrecen 69 (2006), 47-63. · Zbl 1121.60010
[12] M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap, Aggregation functions , Cambridge University Press, Cambridge, 2009. · Zbl 1196.00002
[13] J.H.B. Kemperman, On the FKG -inequality for measures on a partially ordered space, Nederl. Akad. Weten. Proc. 39 (1977), 313-331. · Zbl 0384.28012
[14] A. Khoudraji, Contributions à l’étude des copules et à la modélisation des valeurs extrêmes bivariées , Ph.D. thesis, Université Laval, Québec, 1995.
[15] E.P. Klement, A. Kolesárová, R. Mesiar and C. Sempi, Copulas constructed from horizontal sections , Comm. Stat. Theor. Meth. 36 (2007), 2901-2911. · Zbl 1130.60017
[16] E.P. Klement, A. Kolesárová, R. Mesiar, and A. Stupňanová, Lipschitz continuity of discrete universal integrals based on copulas , Inter. J. Uncertain. Fuzziness Knowledge-Based Systems 18 (2010), 39-52. · Zbl 1190.28010
[17] E.P. Klement, M. Manzi and R. Mesiar, Ultramodular aggregation functions , Inform. Sci. 181 (2011), 4101-4111. · Zbl 1258.03082
[18] E.P. Klement, R. Mesiar and E. Pap, Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms , Fuzzy Sets Syst. 104 (1999), 3-13. · Zbl 0953.26008
[19] —, Transformations of copulas , Kybernetika (Prague) 41 (2005), 425-436. · Zbl 1243.62019
[20] E. Liebscher, Construction of asymmetric multivariate copulas , J. Multivar. Anal. 99 (2008), 2234-2250. · Zbl 1151.62043
[21] M. Marinacci and L. Montrucchio, Ultramodular functions , Math. Oper. Res. 30 (2005), 311-332. · Zbl 1082.52006
[22] A.J. McNeil and J. Nešlehová, Multivariate Archimedean copulas, \(d\) -monotone functions and \(l_1\)-norm symmetric distributions, Ann. Stat. 37 (2009), 3059-3097. · Zbl 1173.62044
[23] R. Mesiar, V. Jágr, M. Juráňová and M. Komorníková, Univariate conditioning of copulas , Kybernetika (Prague) 44 (2008), 807-816. · Zbl 1196.62059
[24] R. Moynihan, On \(\tau_T\) semigroups of probability distribution functions II, Aequat. Math. 17 (1978), 19-40. · Zbl 0386.22005
[25] R.B. Nelsen, An introduction to copulas , (second edition), Springer, New York, 2006. · Zbl 1152.62030
[26] B. Schweizer and A. Sklar, Probabilistic metric spaces , Dover Publications, Mineola, 2006. · Zbl 0546.60010
[27] M. Shaked, A family of concepts of dependence for bivariate distributions , J. Amer. Stat. Assoc. 72 (1977), 642-650. · Zbl 0375.62092
[28] A. Stupňanová and A. Kolesárová, Associative \(n\)-dimensional copulas , Kybernetika (Prague) 47 (2011), 93-99. \noindentstyle · Zbl 1225.03071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.