Cerreia-Vioglio, S.; Kupper, M.; Maccheroni, F.; Marinacci, M.; Vogelpoth, N. Conditional \(L_{p}\)-spaces and the duality of modules over \(f\)-algebras. (English) Zbl 1359.46046 J. Math. Anal. Appl. 444, No. 2, 1045-1070 (2016). Summary: Motivated by dynamic asset pricing, we extend the dual pairs theory of J. Dieudonné [Ann. Sci. Éc. Norm. Supér. (3) 59, 107–139 (1942; JFM 68.0238.02)] and G. W. Mackey [Trans. Am. Math. Soc. 57, 155–207 (1945; Zbl 0061.24301)] to pairs of modules over a Dedekind complete \(f\)-algebra with multiplicative unit. The main tools are: (1) a Hahn-Banach Theorem for modules of this kind;(2) a topology on the \(f\)-algebra that has the special feature of coinciding with the norm topology when the algebra is a Banach algebra and with the strong order topology of D. Filipović et al. [J. Funct. Anal. 256, No. 12, 3996–4029 (2009; Zbl 1180.46055)], when the algebra of all random variables on a probability space \((\operatorname{\Omega}, \mathcal{G}, P)\) is considered. As a leading example, we study in some detail the duality of conditional \(L_p\)-spaces. Cited in 8 Documents MSC: 46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX) Keywords:dual pairs; Hahn-Banach theorem for modules; complete \(L_0\)-normed modules; automatic continuity Citations:Zbl 1180.46055; JFM 68.0238.02; Zbl 0061.24301 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Abramovich, Y. A.; Aliprantis, C. D., An Invitation to Operator Theory (2002), American Mathematical Society: American Mathematical Society Providence · Zbl 1022.47001 [2] Aliprantis, C. D.; Border, K. C., Infinite Dimensional Analysis (2006), Springer: Springer Berlin · Zbl 1156.46001 [3] Aliprantis, C. D.; Burkinshaw, O., Positive Operators (2006), Springer: Springer Dordrecht · Zbl 0508.47037 [4] Birkhoff, G., Lattice-ordered groups, Ann. of Math., 43, 298-331 (1942) · Zbl 0060.05808 [5] Birkhoff, G.; Pierce, R., Lattice-ordered rings, An. Acad. Brasil. Ciênc., 28, 41-69 (1956) · Zbl 0070.26602 [6] Borwein, J. M., Automatic continuity and openness of convex relations, Proc. Amer. Math. Soc., 99, 49-55 (1987) · Zbl 0615.46004 [7] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer: Springer New York · Zbl 1220.46002 [8] Cerreia-Vioglio, S.; Maccheroni, F.; Marinacci, M., Hilbert \(A\)-modules (2014), Universitá Bocconi and IGIER, preprint · Zbl 1364.46044 [9] de Jonge, E.; van Rooij, A. C.M., Introduction to Riesz Spaces (1977), Mathematisch Centrum: Mathematisch Centrum Amsterdam · Zbl 0421.46001 [10] Dieudonné, J., La dualité dans les espaces vectoriels topologiques, Ann. Sci. Éc. Norm. Supér., 59, 107-139 (1942) · JFM 68.0238.02 [11] Filipovic, D.; Kupper, M.; Vogelpoth, N., Separation and duality in locally \(L^0\)-convex modules, J. Funct. Anal., 256, 3996-4029 (2009) · Zbl 1180.46055 [12] Filipovic, D.; Kupper, M.; Vogelpoth, N., Approaches to conditional risk, SIAM J. Financial Math., 3, 402-432 (2012) · Zbl 1255.91178 [13] Fremlin, D. H., Measure Theory, vol. 2 (2010), Torres Fremlin: Torres Fremlin Colchester · Zbl 1225.28012 [14] Frittelli, M.; Maggis, M., Dual representation of quasi-convex conditional maps, SIAM J. Financial Math., 2, 357-382 (2011) · Zbl 1232.46067 [15] Hansen, L. P.; Richard, S. F., The role of conditioning information in deducing testable restrictions implied by dynamic asset pricing models, Econometrica, 587-613 (1987) · Zbl 0613.90004 [16] Harrison, J. M.; Kreps, D. M., Martingales and arbitrage in multiperiod securities markets, J. Econom. Theory, 20, 381-408 (1979) · Zbl 0431.90019 [17] Haydon, R.; Levy, M.; Raynaud, Y., Randomly Normed Spaces (1991), Hermann: Hermann Paris · Zbl 0771.46023 [18] Loève, M., Probability Theory II (1978), Springer: Springer New York · Zbl 0385.60001 [19] Luxemburg, W. A.J.; Zaanen, A. C., Riesz Spaces, vol. I (1971), North-Holland: North-Holland Amsterdam · Zbl 0231.46014 [20] Mackey, G. W., On infinite-dimensional linear spaces, Trans. Amer. Math. Soc., 57, 155-207 (1945) · Zbl 0061.24301 [21] Vincent-Smith, G., The Hahn-Banach theorem for modules, Proc. Lond. Math. Soc., 17, 72-90 (1967) · Zbl 0146.37302 [22] Zaanen, A. C., Riesz Spaces, vol. II (1983), North-Holland: North-Holland Amsterdam · Zbl 0519.46001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.