×

The magic square of reflections and rotations. (English) Zbl 07784571

In the paper under review, the authors consider the following four classes of groups (up to conjugation): (a) finite subgroupsof \(\mathrm{SL}(2,\mathbb{C})\) of even order, (b) finite reflection subgroups of \(\mathrm{GL}(2, \mathbb{C})\) containing \(-1\), (c) finite subgroups of \(\mathrm{SL}(3,\mathbb{R})\), (d) finite reflection subgroups of \(\mathrm{GL}(3,\mathbb{R})\). Among the sets just defined there are some well-known bijections. In particular, these bijections have been studied in the case from (d) to (a) by C. Jordan [Borchardt J. LXXXIV, 89–215 (1877; JFM 09.0096.01)] and by F. Klein [Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. Leipzig. Teubner (1884; JFM 16.0061.01)], from (c) to (d) by H. M. S. Coxeter [Ann. Math. (2) 35, 588-621 (1934; JFM 60.0898.02)], from (b) to (c) by D. Bessis et al. [Math. Ann. 323, No. 3, 405–436 (2002; Zbl 1053.20037)] and from (a) to (b) by G. C. Shephard and J. A. Todd [Can. J. Math. 6, 274–304 (1954)] and by G. Gonzalez-Sprinberg and J. L. Verdier [Ann. Sci. Éc. Norm. Supér. (4) 16, 409–449 (1983; Zbl 0538.14033)]. The title of the paper refers to the square diagram (a), (b), (c), (d). The authors survey how Coxeter’s work implies a bijection between complex reflection groups of rank two and real reflection groups in \(\mathrm{O}(3)\). They also consider this “magic” square of reflections and rotations in the framework of Clifford algebras. In particular, they give an interpretation using (s)pin groups and explore these groups in small dimensions.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
11E88 Quadratic spaces; Clifford algebras
14E16 McKay correspondence
15A66 Clifford algebras, spinors
51F15 Reflection groups, reflection geometries
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] M. A. Armstrong, Groups and symmetry, Springer, New York, 1988. Digital Object Identifier: 10.1007/978-1-4757-4034-9 Google Scholar: Lookup Link · Zbl 0663.20001 · doi:10.1007/978-1-4757-4034-9
[2] M. F. Atiyah, R. Bott, and A. Shapiro, “Clifford modules”, Topology 3:suppl, suppl. 1 (1964), 3-38. Digital Object Identifier: 10.1016/0040-9383(64)90003-5 Google Scholar: Lookup Link · Zbl 0146.19001 · doi:10.1016/0040-9383(64)90003-5
[3] D. Bessis, C. Bonnafé, and R. Rouquier, “Quotients et extensions de groupes de réflexion”, Math. Ann. 323:3 (2002), 405-436. Digital Object Identifier: 10.1007/s002080100284 Google Scholar: Lookup Link · Zbl 1053.20037 · doi:10.1007/s002080100284
[4] H. F. Blichfeldt, Finite collineation groups: with an introduction to the theory of groups of operators and substitution groups, University of Chicago Press, 1917.
[5] N. Bourbaki, Algèbre, Chapitre 9: Formes sesquilinéaires et formes quadratiques, Actualités Sci. Ind. 1272, Hermann, Paris, 1959. Reprinted Springer, Berlin, 2007. · Zbl 0102.25503
[6] R.-O. Buchweitz, “From platonic solids to preprojective algebras via the McKay correspondence”, Oberwolfach Jahresbericht (2012), 18-28.
[7] R.-O. Buchweitz, “Definition of Pin groups?”, MathOverflow, 2016, available at https://mathoverflow.net/questions/251288/definition-of-pin-groups.
[8] R.-O. Buchweitz, E. Faber, and C. Ingalls, “A McKay correspondence for reflection groups”, Duke Math. J. 169:4 (2020), 599-669. Digital Object Identifier: 10.1215/00127094-2019-0069 Google Scholar: Lookup Link · Zbl 1451.14043 · doi:10.1215/00127094-2019-0069
[9] R.-O. Buchweitz, E. Faber, and C. Ingalls, “Noncommutative resolutions of discriminants”, pp. 37-52 in Representations of algebras, edited by G. J. Leuschke et al., Contemp. Math. 705, Amer. Math. Soc., Providence, RI, [2018] ©2018. Digital Object Identifier: 10.1090/conm/705/14199 Google Scholar: Lookup Link · Zbl 1401.14079 · doi:10.1090/conm/705/14199
[10] Y. Choquet-Bruhat and C. DeWitt-Morette, Analysis, manifolds and physics, Part II, North-Holland, Amsterdam, 1989. · Zbl 0682.58002
[11] J. H. Conway and D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Natick, MA, 2003. · Zbl 1098.17001
[12] H. S. M. Coxeter, “Discrete groups generated by reflections”, Ann. of Math. (2) 35:3 (1934), 588-621. Digital Object Identifier: 10.2307/1968753 Google Scholar: Lookup Link · JFM 60.0898.02 · doi:10.2307/1968753
[13] H. S. M. Coxeter, Regular complex polytopes, 2nd ed., Cambridge University Press, 1991. · Zbl 0732.51002
[14] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, and R. Remmert, Numbers, Graduate Texts in Mathematics 123, Springer, New York, 1990. Digital Object Identifier: 10.1007/978-1-4612-1005-4 Google Scholar: Lookup Link · doi:10.1007/978-1-4612-1005-4
[15] G. Gonzalez-Sprinberg and J.-L. Verdier, “Construction géométrique de la correspondance de McKay”, Ann. Sci. École Norm. Sup. (4) 16:3 (1983), 409-449. Digital Object Identifier: 10.24033/asens.1454 Google Scholar: Lookup Link · Zbl 0538.14033 · doi:10.24033/asens.1454
[16] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, 1990. Digital Object Identifier: 10.1017/CBO9780511623646 Google Scholar: Lookup Link · Zbl 0725.20028 · doi:10.1017/CBO9780511623646
[17] M. C. Jordan, “Mémoire sur les équations différentielles linéaires à intégrale algébrique”, J. Reine Angew. Math. 84 (1878), 89-215. Digital Object Identifier: 10.1515/crelle-1878-18788408 Google Scholar: Lookup Link · JFM 09.0234.01 · doi:10.1515/crelle-1878-18788408
[18] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Stuttgart, 1884. Reprinted Birkhäuser, Basel, 1993 (edited by P. Slodowy); translated as Lectures on the icosahedron and the solution of equations of the fifth degree, Kegan Paul, London, 1913 (2nd edition); reprinted by Dover, 1953. Digital Object Identifier: 10.1007/978-3-0348-8594-2 Google Scholar: Lookup Link · doi:10.1007/978-3-0348-8594-2
[19] H. Knörrer, “Group representations and the resolution of rational double points”, pp. 175-222 in Finite groups—coming of age (Montreal, 1982), edited by J. McKay, Contemp. Math. 45, Amer. Math. Soc., Providence, RI, 1985. Digital Object Identifier: 10.1090/conm/045/822239 Google Scholar: Lookup Link · Zbl 0589.14002 · doi:10.1090/conm/045/822239
[20] M.-A. Knus, Quadratic and Hermitian forms over rings, Grundl. Math. Wissen. 294, Springer, Berlin, 1991. Digital Object Identifier: 10.1007/978-3-642-75401-2 Google Scholar: Lookup Link · Zbl 0756.11008 · doi:10.1007/978-3-642-75401-2
[21] T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67, American Mathematical Society, Providence, RI, 2005. Digital Object Identifier: 10.1090/gsm/067 Google Scholar: Lookup Link · Zbl 1068.11023 · doi:10.1090/gsm/067
[22] P. Lounesto, Clifford algebras and spinors, 2nd ed., London Mathematical Society Lecture Note Series 286, Cambridge University Press, 2001. Digital Object Identifier: 10.1017/CBO9780511526022 Google Scholar: Lookup Link · Zbl 0973.15022 · doi:10.1017/CBO9780511526022
[23] I. R. Porteous, Clifford algebras and the classical groups, Cambridge Studies in Advanced Mathematics 50, Cambridge University Press, 1995. Digital Object Identifier: 10.1017/CBO9780511470912 Google Scholar: Lookup Link · Zbl 0855.15019 · doi:10.1017/CBO9780511470912
[24] W. Scharlau, Quadratic forms, Queen’s Papers in Pure and Applied Mathematics 22, Queen’s University, Kingston, ON, 1969. · Zbl 0194.35104
[25] W. Scharlau, Quadratic and Hermitian forms, Grundl. Math. Wissen. 270, Springer, Berlin, 1985. Digital Object Identifier: 10.1007/978-3-642-69971-9 Google Scholar: Lookup Link · Zbl 0584.10010 · doi:10.1007/978-3-642-69971-9
[26] G. C. Shephard and J. A. Todd, “Finite unitary reflection groups”, Canad. J. Math. 6 (1954), 274-304. Digital Object Identifier: 10.4153/cjm-1954-028-3 Google Scholar: Lookup Link · Zbl 0055.14305 · doi:10.4153/cjm-1954-028-3
[27] M. Vela, “Central simple \[\mathbb{Z}/n\mathbb{Z} \]-graded algebras”, Comm. Algebra 30:4 (2002), 1995-2021. Digital Object Identifier: 10.1081/AGB-120013228 Google Scholar: Lookup Link · Zbl 1011.16030 · doi:10.1081/AGB-120013228
[28] E. Witt, “Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe”, Abh. Math. Sem. Hansischen Univ. 14 (1941), 289-322. Digital Object Identifier: 10.1007/BF02940749 Google Scholar: Lookup Link · Zbl 0025.30202 · doi:10.1007/BF02940749
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.