×

zbMATH — the first resource for mathematics

Generalized Laplace transform of locally integrable functions defined on \([0,\infty)\). (English) Zbl 1469.44001
Summary: In [the author, Bull. Cl. Sci. Math. Nat. Sci. Math. 40, 99–113 (2015; Zbl 1456.44002)] we defined the Laplace transform on a bounded interval \([0,b]\), denoted by \(^0\mathcal{L}\), using some ideas of H. Komatsu [J. Fac. Sci., Univ. Tokyo, Sect. I A 34, 805–820 (1987; Zbl 0644.44001); in: Structure of solutions of differential equations. Proceedings of the Taniguchi symposium, Katata, Japan, June 26–30, 1995 and the RIMS symposium, Kyoto, Japan, July 3–7, 1995. Singapore: World Scientific. 227–252 (1996; Zbl 0894.35005)]. We use this definition to extend it to the space of locally integrable functions defined on \([0,\infty)\), which is a wider class than functions \(L\) used by G. Doetsch [Handbuch der Laplace-Transformation. I: Die theoretischen Grundlagen der Laplace-Transformation. Basel: Birkhäuser (1950; Zbl 0040.05901); Handbuch der Laplace-Transformation. II: Anwendungen der Laplace-Transformation. Basel, Stuttgart: Birkhäuser (1955; Zbl 0065.34001); Handbuch der Laplace-Transformation. III: Anwendungen der Laplace-Transformation. 2. Abteilung. Basel: Birkhäuser (1956; Zbl 0070.33102)]. As an application we give solutions of integral equations of the convolution type, defined on a bounded interval, or on the half-axis as well, and of equations with fractional derivatives.
MSC:
44A10 Laplace transform
PDF BibTeX XML Cite
Full Text: Link
References:
[1] G. Doetsch,Handbuch der Lalace-Transformation I - III, Basel - Stuttgart, 1950 - 1956.
[2] G. Doetsch,Introduction ’a L’Utilistion Pratique de Laplace, Gautier-Vilars. 1959 (traduit M. Parodi).
[3] A. A. Kilbas,Theory and Applications of Fractional Differential Equations, ELSEVIER, Amsterdam, 2006. · Zbl 1092.45003
[4] H. Komatsu,Laplace transform of hyperfunctions - A new fondation of the Heaviside calculus, J. Fac. Sci. Univ. Tokyo, IA,34(1987), 805-820. · Zbl 0644.44001
[5] H. Komatsu,Solution of differential equations by means of Laplace hyperfunctions, Structure of solutions of differential equations(Katata/Kyoto, 1995), World Sci. Publishing, River Edge, NJ (1996), 227-252. · Zbl 0894.35005
[6] J. Mikusi´nski, T. K. Boehme,Operational Calculus II, Pergamon Press, Oxford, 1987.
[7] W. Pogorzelski,Integral Equation and Their Applications, Vol. 1, Pergamon Press, Oxford, 1966. · Zbl 0137.30502
[8] B. Stankovi´c,Sur une classe d’´equations int´egrales singuli’eres, Reguli des travaux de l’Acad. Serbe des Sciences XLIII. Inst. Math. N 4. 1955.
[9] B. Stankovi´c,Laplace transform of functions defined on a bounded interval, Bull. Cl. Sci. Math. Nat. Sci. Math.40(2015), 99-113.
[10] E. M. Wright,The generalized Bessel functions of order greater then one, Quart. J. Math. Oxford series 2, 1940.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.