Alexandrovich, A. I.; Sheina, A. A. Plane boundary problems of the nonlinear theory of elasticity. Signorini’s model derivation by means of complex variable theory. (Russian. English summary) Zbl 1110.74015 Mat. Model. 18, No. 9, 43-53 (2006). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 74B20 74S30 30C20 PDF BibTeX XML Cite \textit{A. I. Alexandrovich} and \textit{A. A. Sheina}, Mat. Model. 18, No. 9, 43--53 (2006; Zbl 1110.74015) Full Text: MNR OpenURL
Gulua, B. Application of I. Vekua method for non-shallow cilindrical shells. (English) Zbl 1207.74088 Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 18, No. 2, 64-67 (2003). MSC: 74K25 PDF BibTeX XML Cite \textit{B. Gulua}, Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 18, No. 2, 64--67 (2003; Zbl 1207.74088) OpenURL
Linkov, Alexander M. Boundary integral equations in elasticity theory. (English) Zbl 1046.74001 Solid Mechanics and Its Applications 99. Dordrecht: Kluwer Academic Publishers (ISBN 1-4020-0574-1/hbk). xiii, 268 p. (2002). Reviewer: Søren Christiansen (Lyngby) MSC: 74-02 74S15 65R20 74B05 PDF BibTeX XML Cite \textit{A. M. Linkov}, Boundary integral equations in elasticity theory. Dordrecht: Kluwer Academic Publishers (2002; Zbl 1046.74001) OpenURL
Chan, Raymond H.; DeLillo, Thomas K.; Horn, Mark A. Superlinear convergence estimates for a conjugate gradient method for the biharmonic equation. (English) Zbl 0908.30004 SIAM J. Sci. Comput. 19, No. 1, 139-147 (1998). MSC: 30C30 31A30 65E05 PDF BibTeX XML Cite \textit{R. H. Chan} et al., SIAM J. Sci. Comput. 19, No. 1, 139--147 (1998; Zbl 0908.30004) Full Text: DOI OpenURL
Ieşan, Dorin Saint-Venant’s problem for heterogeneous anisotropic elastic solids. (English) Zbl 0342.73008 Ann. Mat. Pura Appl., IV. Ser. 108, 149-159 (1976). MSC: 74E10 74G50 74K10 74E30 PDF BibTeX XML Cite \textit{D. Ieşan}, Ann. Mat. Pura Appl. (4) 108, 149--159 (1976; Zbl 0342.73008) Full Text: DOI OpenURL
Muskhelishvili, N. I. [Barenblatt, M.; Kalandiya, A. I.; Mandzhavidze, G. F.] Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending. Fifth revised and enlarged edition. With a supplementary chapter by G. M. Barenblatt, A. I. Kalandiya and G. F. Mandzhavidze. (Некоторые основные задачи математической теории упругости. Основные уравнения, плоская теория упругости, кручение и изгиб.) (Russian) Zbl 0151.36201 Moskau: Izdat. ‘Nauka’. FizMatLit. 707 S. (1966). MSC: 74-01 74Axx 74Bxx 35-01 PDF BibTeX XML OpenURL
Muskhelishvili, N. I. Some basic problems of the mathematical theory of elasticity. Fundamental equations, plane theory of elasticity, torsion and bending. 4th revised and enlarged edition. (Некоторые основные задачи математической теории упругости. Основные уравнения, плоская теория упругости, кручение и изгиб.) (Russian) Zbl 0057.16805 Moskva: Izdat. Akad. Nauk SSSR. 648 pp. (1954). Reviewer: T. P. Angelitch MSC: 74-01 35-01 PDF BibTeX XML OpenURL