×

The Bagemihl theorem for the skeleton of a polydisk and its applications. (English. Russian original) Zbl 1252.32014

Russ. Math. 55, No. 6, 29-36 (2011); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2011, No. 6, 35-43 (2011).
Summary: In this paper we prove an analog of the Bagemihl theorem [F. Bagemihl, Proc. Natl. Acad. Sci. USA 41, 379–382 (1955; Zbl 0065.06604)] for functions defined in a polydisk. We apply the obtained result for studying properties of functions of linearly invariant families.

MSC:

32A40 Boundary behavior of holomorphic functions of several complex variables

Citations:

Zbl 0065.06604
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] F. Bagemihl, ”Curvilinear Cluster Sets of Arbitrary Function,” Proc. Nat. Acad. Sci. USA 41, 379–382 (1955). · Zbl 0065.06604
[2] G. S. Young, ”AGeneralization ofBagemihl’s Theorem on Ambiguous Point,” MichiganMath. J. 5, 223–227 (1958).
[3] F. Bagemihl, ”Rectilinear Limits of a Function Defined Inside of Sphere,” Michigan Math. J. 4, 147–150 (1957). · Zbl 0080.08402
[4] G. Piranian, ”Ambiguous Points of a Function Continuous Inside a Sphere,” Michigan Math. J. 4, 151–152 (1957). · Zbl 0080.08403
[5] F. Bagemihl, ”Ambiguous Points of a Function Harmonic Inside a Sphere,” Michigan Math. J. 4, 153–154 (1957). · Zbl 0080.08404
[6] P. T. Church, ”Ambiguous Points of a Function Homeomorphic Inside a Sphere,” Michigan Math. J. 4, 155–156 (1957). · Zbl 0080.08405
[7] P. J. Rippon, ”Ambiguous Points of a Function in the Unit Ball of Euclidean Space,” Bull. Lond. Math. Soc. 15, 336–338 (1983). · Zbl 0529.31008
[8] Ch. Pommerenke, ”Linear-invariante Familien analytischer Funktionen I,” Math. Ann. 155, 108–154 (1964). · Zbl 0128.30105
[9] J. Godula and V. V. Starkov, ”Linearly Invariant Families of Holomorphic Functions in the Unit Polydisk,” Generalizations of Complex Analysis and Their Applications in Physics. Banach Center Publ., No. 37, 115–127 (1996). · Zbl 0868.32008
[10] J. Krzy\.z, ”On the Maximum Modulus of Univalent Functions,” Bull. Pol. Acad. Sci. Math., Cl. III 3, 203–206 (1955). · Zbl 0065.30903
[11] W. K. Hayman, Multivalued Functions (Cambridge University Press, 1958; Inost. Lit., Moscow, 1960). · Zbl 0082.06102
[12] L. Bieberbach, Einführung in die Konforme Abbildung (Sammlung Göschen, Berlin, 1967). · JFM 45.0664.06
[13] D.M. Campbell, ”LocallyUnivalent Functions with Locally Univalent Derivatives,” Trans. Amer. Math. Soc. 162, 395–409 (1971). · Zbl 0225.30017
[14] V. V. Starkov, ”Regularity Theorems for Universal Linearly Invariant Families of Functions,” Bulg. Matem. J. ”Serdika” 11, 299–318 (1985). · Zbl 0594.30013
[15] J. Godula and V. V. Starkov, ”A Regularity Theorem for Linearly Invariant Families of Functions in a Polydisk,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 21–33 (1995) [Russian Mathematics (Iz. VUZ) 39 (8), 19–30 (1995)]. · Zbl 0855.32001
[16] J. Godula and V. V. Starkov, ”On Regularity Theorems for Linearly Invariant Families of Analytic Functions in the Unit Polydisk,” Comput.Methods and Function Theory, 241–257 (1997). · Zbl 0943.32003
[17] J. Godula and V. V. Starkov, ”On Regularity Theorems for Linearly Invariant Families of Analytic Functions in the Unit Polydisk. II,” Ann. Univ.Mariae Curie-Skłodowska, Sect. A 52(2), 15–24 (1998). · Zbl 1011.32001
[18] E. G. Ganenkova, ”A Theorem on the Regularity of Decrease for Functions Analytic in a Polydisk,” Trudy Petrozavodsk. Gos. Univ. Ser. Matem., No. 14, 14–30 (2007). · Zbl 1190.32002
[19] E. G. Ganenkova, ”A Theorem on the Regularity of Decrease in Linearly Invariant Families of Functions,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 75–78 (2007) [Russian Mathematics (Iz. VUZ) 51 (2), 71–74 (2007)]. · Zbl 1139.30010
[20] E. G. Ganenkova, ”Some Boundary Properties of Analytic in a Polydisk Functions which Form Linearly Invariant Families,” Trudy Petrozavodsk. Gos. Univ. Ser.Matem., No. 16, 12–32 (2009).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.