Schneider, Peter \(p\)-adic Lie groups. (English) Zbl 1223.22008 Grundlehren der Mathematischen Wissenschaften 344. Berlin: Springer (ISBN 978-3-642-21146-1/hbk; 978-3-642-21147-8/ebook). xi, 254 p. (2011). Reviewer: Balasubramanian Sury (Bangalore) MSC: 22-02 22E35 PDF BibTeX XML Cite \textit{P. Schneider}, \(p\)-adic Lie groups. Berlin: Springer (2011; Zbl 1223.22008) Full Text: DOI OpenURL
Ditters, E. J. Various \(S\)-adic symmetric functions and smooth formal groups. (English) Zbl 1182.05127 Int. J. Pure Appl. Math. 55, No. 4, 491-512 (2009). MSC: 05E05 14L05 16T05 PDF BibTeX XML Cite \textit{E. J. Ditters}, Int. J. Pure Appl. Math. 55, No. 4, 491--512 (2009; Zbl 1182.05127) OpenURL
Serre, Jean-Pierre Lie algebras and Lie groups. 1964 lectures, given at Harvard University. 2nd ed. (English) Zbl 0742.17008 Lecture Notes in Mathematics. 1500. Berlin etc.: Springer-Verlag. vii, 168 p. (1992). Reviewer: Olaf Ninnemann (Berlin) MSC: 17Bxx 22Exx 17-01 22-01 17B37 17B20 14L05 17B01 17B30 17B10 PDF BibTeX XML Cite \textit{J.-P. Serre}, Lie algebras and Lie groups. 1964 lectures, given at Harvard University. 2nd ed. Berlin etc.: Springer-Verlag (1992; Zbl 0742.17008) OpenURL
Serre, Jean-Pierre Algèbres de Lie semi-simples complexes. (French) Zbl 0144.02105 New York-Amsterdam: W. A. Benjamin, Inc. viii, 130 p. (not consecutively paged) (1966). Reviewer: Eiichi Abe (Ibaraki) MSC: 17-02 17B20 17B22 17B10 17B30 PDF BibTeX XML OpenURL