Bisbas, Antonis A Cassels-Schmidt theorem for non-homogeneous Markov chains. (English) Zbl 1080.11055 Bull. Sci. Math. 129, No. 1, 25-37 (2005). Reviewer: Takao Komatsu (Hirosaki) MSC: 11K16 42A38 60J10 28A78 37A45 28A80 PDF BibTeX XML Cite \textit{A. Bisbas}, Bull. Sci. Math. 129, No. 1, 25--37 (2005; Zbl 1080.11055) Full Text: DOI OpenURL
Tempelman, A. A. Multifractal analysis of ergodic averages: a generalization of Eggleston’s theorem. (English) Zbl 1073.37008 J. Dyn. Control Syst. 7, No. 4, 535-551 (2001). MSC: 37A30 28A80 28D05 37A45 37C45 PDF BibTeX XML Cite \textit{A. A. Tempelman}, J. Dyn. Control Syst. 7, No. 4, 535--551 (2001; Zbl 1073.37008) Full Text: DOI OpenURL
Liang, Jin-Rong; Ren, Fu-Yao Hausdorff dimensions of random net fractals. (English) Zbl 0930.28005 Stochastic Processes Appl. 74, No. 2, 235-250 (1998). Reviewer: Ivan Saxl (Praha) MSC: 28A78 28A80 PDF BibTeX XML Cite \textit{J.-R. Liang} and \textit{F.-Y. Ren}, Stochastic Processes Appl. 74, No. 2, 235--250 (1998; Zbl 0930.28005) Full Text: DOI OpenURL
Billingsley, Patrick Ergodic theory and information. (Ергодическая Теория и Информация.) (Russian) Zbl 0184.43301 Moskau: Verlag ’Mir’. 240 S. (1969). MSC: 94-01 28-01 94A17 PDF BibTeX XML OpenURL
Furstenberg, Harry Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. (English) Zbl 0146.28502 Math. Syst. Theory 1, 1-49 (1967). Reviewer: William Parry MSC: 37A05 37A25 37B05 37B40 28D05 28D20 11K06 PDF BibTeX XML Cite \textit{H. Furstenberg}, Math. Syst. Theory 1, 1--49 (1967; Zbl 0146.28502) Full Text: DOI OpenURL