Roelfs, Martin; De Keninck, Steven Graded symmetry groups: plane and simple. (English) Zbl 07687970 Adv. Appl. Clifford Algebr. 33, No. 3, Paper No. 30, 41 p. (2023). Reviewer: Egle Bettio (Venezia) MSC: 22E70 20F55 15A66 PDF BibTeX XML Cite \textit{M. Roelfs} and \textit{S. De Keninck}, Adv. Appl. Clifford Algebr. 33, No. 3, Paper No. 30, 41 p. (2023; Zbl 07687970) Full Text: DOI arXiv
Eschenburg, Jost; Hanke, Bernhard Bott periodicity, submanifolds, and vector bundles. (English) Zbl 1394.55013 Suh, Young Jin (ed.) et al., Hermitian-Grassmannian submanifolds. Daegu, Korea, July 2016. Proceedings of the 20th international workshop on Hermitian symmetric spaces and submanifolds, IWHSSS 2016, Daegu, South Korea, July 26–30, 2016. Singapore: Springer (ISBN 978-981-10-5555-3/hbk; 978-981-10-5556-0/ebook). Springer Proceedings in Mathematics & Statistics 203, 295-309 (2017). Reviewer: Jonathan Hodgson (Swarthmore) MSC: 55R45 55R50 53C35 53C15 15A66 57R22 57T20 PDF BibTeX XML Cite \textit{J. Eschenburg} and \textit{B. Hanke}, Springer Proc. Math. Stat. 203, 295--309 (2017; Zbl 1394.55013) Full Text: DOI arXiv
Anglès, Pierre A few comments on conformal spin structures and conformal \(\mathrm{U}(1)\)-spin structures on a pseudo-Riemannian \(2r\)-dimensional manifold \(V\). (English) Zbl 1426.53067 Adv. Appl. Clifford Algebr. 27, No. 1, 165-183 (2017). MSC: 53C27 11E88 15A66 20G20 PDF BibTeX XML Cite \textit{P. Anglès}, Adv. Appl. Clifford Algebr. 27, No. 1, 165--183 (2017; Zbl 1426.53067) Full Text: DOI
Ovsienko, Valentin Real Clifford algebras and quadratic forms over \({\mathbb{F}}_2\): two old problems become one. (English) Zbl 1359.11032 Math. Intell. 38, No. 3, 1-5 (2016). MSC: 11E88 11-02 PDF BibTeX XML Cite \textit{V. Ovsienko}, Math. Intell. 38, No. 3, 1--5 (2016; Zbl 1359.11032) Full Text: DOI arXiv
Zhao, Deke Graded Morita equivalence of Clifford superalgebras. (English) Zbl 1273.15027 Adv. Appl. Clifford Algebr. 23, No. 1, 269-281 (2013). Reviewer: László Stachó (Szeged) MSC: 15A66 16W55 PDF BibTeX XML Cite \textit{D. Zhao}, Adv. Appl. Clifford Algebr. 23, No. 1, 269--281 (2013; Zbl 1273.15027) Full Text: DOI arXiv
Karoubi, Max Clifford modules and twisted \(K\)-theory. (English) Zbl 1194.19004 Adv. Appl. Clifford Algebr. 18, No. 3-4, 765-769 (2008). Reviewer: Keith Johnson (Halifax) MSC: 19L50 15A66 PDF BibTeX XML Cite \textit{M. Karoubi}, Adv. Appl. Clifford Algebr. 18, No. 3--4, 765--769 (2008; Zbl 1194.19004) Full Text: DOI arXiv
da Rocha, R.; Vaz, J. jun. Conformal structures and twistors in the paravector model of spacetime. (English) Zbl 1151.15028 Int. J. Geom. Methods Mod. Phys. 4, No. 4, 547-576 (2007). Reviewer: Wolfgang Sprößig (Freiberg) MSC: 15A66 81R05 83C60 PDF BibTeX XML Cite \textit{R. da Rocha} and \textit{J. Vaz jun.}, Int. J. Geom. Methods Mod. Phys. 4, No. 4, 547--576 (2007; Zbl 1151.15028) Full Text: DOI arXiv
Gilbert, John E.; Murray, Margaret A. M. Clifford algebras and Dirac operators in harmonic analysis. (English) Zbl 0733.43001 Cambridge Studies in Advanced Mathematics, 26. Cambridge (UK): Cambridge University Press. vi, 334 p. £37.50; $ 75.00 (1991). Reviewer: Wilhelm Singhof (Düsseldorf) MSC: 43-02 43A80 15A66 58J20 58J60 58J40 30G30 31C05 32A35 57R15 PDF BibTeX XML Cite \textit{J. E. Gilbert} and \textit{M. A. M. Murray}, Clifford algebras and Dirac operators in harmonic analysis. Cambridge (UK): Cambridge University Press (1991; Zbl 0733.43001)
Davies, E. B.; Rothaus, O. S. Markov semigroups on \(C^*\)-bundles. (English) Zbl 0694.46049 J. Funct. Anal. 85, No. 2, 264-286 (1989). Reviewer: A.Wulfsohn MSC: 46L51 46L53 46L54 47D07 57R25 17C10 PDF BibTeX XML Cite \textit{E. B. Davies} and \textit{O. S. Rothaus}, J. Funct. Anal. 85, No. 2, 264--286 (1989; Zbl 0694.46049) Full Text: DOI
Knus, M. A. A generalisation of Clifford algebras. (English) Zbl 0177.05802 Math. Z. 110, 171-176 (1969). Reviewer: M. A. Knus (Geneva) MSC: 16W50 15A66 PDF BibTeX XML Cite \textit{M. A. Knus}, Math. Z. 110, 171--176 (1969; Zbl 0177.05802) Full Text: DOI EuDML