Transforming tradition: Richard Courant in Göttingen. (English) Zbl 1320.01045

Courant came to Göttingen in 1907 where he met three other Breslau Jews: Otto Toeplitz, Max Born and Ernst Hellinger. At that time, the leading scientists in Göttingen were David Hilbert, Hermann Minkowski and Felix Klein, exponenents of the so-called Weimar culture. After the First World War, Courant became assistant to Carl Runge, in 1919, Courant married Runge’s daughter Nina. In 1920, Courant succeeded Felix Klein and collaborated intensively with Max Born and James Franck; Courant’s main idea was a closer link between pure and applied mathematics. Since Born and Franck also were of Jewish origin, they were called the “Courant clique”. All three of them were dismissed in 1933 and Courant left Göttingen and Germany. Courant was an innovator as well as a traditionalist. During his time in Göttingen, Courant’s main fields were conformal mapping, boundary value problems, Riemann surfaces, and Dirichlet’s principle. Courant had a close relationship to Ferdinand and Julius Springer, the “yellow series” was founded. Courant contributed to a textbook of Adolf Hurwitz [Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. Herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant. Berlin: J. Springer (1922; JFM 48.1207.01); 2nd ed. (1925; JFM 51.0236.12); 3rd ed. (1929; JFM 55.0171.01); 4th ed. (1964; Zbl 0135.12101)]. Of great importance was the textbook by R. Courant and D. Hilbert [Methoden der mathematischen Physik. 1. Band. Berlin: J. Springer (1924; JFM 50.0335.07); 2nd ed. (1931; JFM 57.0245.01; Zbl 0001.00501); 3rd ed. (1968; Zbl 0156.23201); Vol. 2 (1937; JFM 63.0449.05; Zbl 0017.39702); 2nd ed. (1968; Zbl 0161.29402)]. Otto Neugebauer “was still only a student without a doctorate when Courant took him under his wing”. Later, O. Neugebauer dedicated his textbook [The exact sciences in antiquity. Princeton, N. J.: Princeton University Press (1952; Zbl 0049.00201); Copenhagen (1951); 2nd ed. (1957; Zbl 0084.00201)] to Richard Courant. The author’s last sentence gives the following summary: “So Courant continued to innovate in the name of preserving past ideals. In both settings however, a consistent theme remained: his romantic longing for the Göttingen he had known in his youth”.


01A70 Biographies, obituaries, personalia, bibliographies

Biographic References:

Courant, Richard
Full Text: DOI


[1] H. Becker, H.-J. Dahms, C. Wegeler (Hrsg.), Die Universität Göttingen unter dem Nationalsozialismus, München: K. G. Saur, 1987.
[2] Birgit Bergmann, Moritz Epple, Ruti Ungar, eds., Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture, Heidelberg: Springer-Verlag, 2012. · Zbl 1234.01003
[3] Kurt-R. Biermann, Die Mathematik und ihre Dozenten an der Berliner Universität, 1810-1933, Berlin: Akademie Verlag, 1988. · Zbl 0661.01026
[4] Max Born, My Life. Recollections of a Nobel Laureate. New York: Charles Scribner’s Sons, 1978.
[5] Richard Courant, “Felix Klein,” DieNaturwissenschaften, 37(1925): 765-772.
[6] Richard Courant, “Reminiscences from Hilbert’s Göttingen,” Mathematical Intelligencer, 3(4)(1981): 154-164. · Zbl 0474.01009
[7] Albert Einstein, Collected Papers of Albert Einstein, Vol. 9: The Berlin Years: Correspondence, January 1919-April 1920, Diana Kormos Buchwald, et al., eds. Princeton: Princeton University Press, 2004.
[8] Abraham Flexner, Universities: American, English, German, Oxford: Oxford University Press, 1930.
[9] Günther Frei, “On the History of the Artin Reciprocity Law in Abelian Extensions of Algebraic Number Fields: How Artin Was Led to his Reciprocity Law,” in Olav Arnfinn Laudal and Ragni Piene, eds. The Legacy of Niels Henrik Abel, Berlin: Springer-Verlag, 2004, 267-294. · Zbl 1065.11001
[10] Günther Frei and Urs Stammbach, Hermann Weyl und die Mathematik an der ETH Zürich, 1913-1930, Basel: Birkhäuser, 1992.
[11] Nellie H. Friedrichs, Erinnerungen aus meinem Leben in Braunschweig 1912-1937, 2nd ed. Braunschweig: Stadtarchiv und Stadtbibliothek, 1988.
[12] Peter Gay, Weimar Culture: The Outsider as Insider, New York: Harper & Row, 1968.
[13] Nancy Thorndike Greenspan, The End of the Certain World: The Life and Science of Max Born: The Nobel Physicist Who Ignited the Quantum Revolution, New York: Basic Books, 2005. · Zbl 1165.81003
[14] Herbert Mehrtens, “Ludwig Bieberbach and ‘Deutsche Mathematik,’” Studies in the History of Mathematics, Esther R. Phillips, ed. MAA Studies in Mathematics, vol. 26, Washington: Mathematical Association of America, 1987, 195-241.
[15] Stefan Müller-Stach, “Otto Toeplitz: Algebraiker der unendlichen Matrizen,” Mathematische Semesterberichte, 61(1) (2014): 53-77. · Zbl 1308.01009
[16] Peter Lax, “Richard Courant,” BiographicalMemoirs. National Academy of Sciences, 82 (2003): 78-97.
[17] Otto Neugebauer, “Das Mathematische Institut der Universität Göttingen,” Die Naturwissenschaften, 18 (1930): 1-4. · JFM 56.0081.01
[18] Otto Neugebauer, The Exact Sciences in Antiquity, 2nd ed. Providence: Brown University Press, 1957; first edition 1951, Munksgaard, Copenhagen; reprinted 1969, New York: Dover. · Zbl 0084.00201
[19] Otto Neugebauer, “Reminiscences on the Göttingen Mathematical Institute on the Occasion of R. Courant’s 75th Birthday,” 1963; Otto Neugebauer Papers, Institute for Advanced Study, Princeton, Box 14, Publications vol. 11.
[20] Karen H. Parshall and David E. Rowe, The Emergence of the American Mathematical Research Community, 1876-1900. J. J. Sylvester, Felix Klein, and E. H. Moore, History of Mathematics, vol. 8, Providence, Rhode Island: American Mathematical Society, 1994. · Zbl 0802.01005
[21] Constance Reid, Hilbert. New York: Springer-Verlag, 1970.
[22] Constance Reid, Courant in Göttingen and New York: The Story of an Improbable Mathematician, New York: Springer-Verlag, 1976. · Zbl 0353.01010
[23] Volker Remmert and Ute Schneider, Eine Disziplin und ihre Verleger. Disziplinenkultur und Publikationswesen der Mathematik in Deutschland, 1871-1949, Bielefeld; Transkript, 2010.
[24] David E. Rowe, “The Old Guard under a New Order: K. O. Friedrichs Meets Felix Klein,” Mathematical Intelligencer, 6(2)(1984): 74-76. · Zbl 0535.01010
[25] David E. Rowe, “‘Jewish Mathematics’ at Göttingen in the Era of Felix Klein,” Isis, 77(1986), 422-449. · Zbl 0608.01040
[26] David E. Rowe, “Klein, Hilbert, and the Göttingen Mathematical Tradition,” Science in Germany: The Intersection of Institutional and Intellectual Issues, Kathryn M. Olesko, ed. (Osiris, 5, 1989), 189-213.
[27] David E. Rowe, “An Interview with Dirk Jan Struik,” Mathematical Intelligencer, 11(1)(1989): 14-26. · Zbl 0659.01017
[28] David E. Rowe, “Hermann Weyl, the Reluctant Revolutionary,” Mathematical Intelligencer, 25(1) (2003), 61-70.
[29] David E. Rowe, “Otto Neugebauer and Richard Courant: On Exporting the Göttingen Approach to the History of Mathematics,” Mathematical Intelligencer, 34 (2)(2012): 29-37. · Zbl 1251.01001
[30] David E. Rowe, “Otto Neugebauer’s Vision for Rewriting the History of Ancient Mathematics,” Anabases—Traditions et réceptions de l’Antiquité, 18(2013): 175-196.
[31] David E. Rowe and Robert Schulmann, eds., Einstein on Politics: His Private Thoughts and Public Stands on Nationalism, Zionism, War, Peace, and the Bomb, Princeton University Press, 2007.
[32] Heinz Sarkowski, Springer-Verlag. History of a Scientific Publishing House, Part I: 1842-1945. Heidelberg: Springer, 1996.
[33] Norbert Schappacher, “Das Mathematische Institut der Universität Gottingen 1929-1950,” in [1], 345-373.
[34] Norbert Schappacher, “Edmund Landau’s Göttingen: From the Life and Death of a Great Mathematical Center,” The Mathematical Intelligencer 13(4)(1991): 12-18. · Zbl 0744.01025
[35] Reinhard Siegmund-Schultze, Rockefeller and the Internationalization of Mathematics between the Two World Wars: Documents and Studies for the Social History of Mathematics in the 20th Century, Science Networks, 25, Basel, Boston, and Berlin: Birkhäuser, 2001. · Zbl 0981.01013
[36] Reinhard Siegmund-Schultze, Mathematicians Fleeing from Nazi Germany: Individual Fates and Global Impact, Princeton: Princeton University Press, 2009. · Zbl 1179.01024
[37] Edith Stein, Aus dem Leben einer jüdischen Familie, Freiburg: Verlag Herder, 1965.
[38] Antonina Vallentin, The Drama of Albert Einstein, New York: Doubleday, 1954.
[39] Hermann Weyl, “David Hilbert and His Mathematical Work,” Bulletin of the American Mathematical Society, 50(1944), 612-654; reprinted in [40], 130-172. · Zbl 0060.01521
[40] Hermann Weyl, Gesammelte Abhandlungen, vol. 4, K. Chandrasekharan, ed. Berlin: Springer, 1968.
[41] Gereon Wolters, “Opportunismus als Naturanlage: Hugo Dingler und das ‘Dritte Reich,’” in Entwicklungen der methodischen Philosophie, hrsg. Peter Janich, Frankfurt a. M., 1992, 257-327.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.