On the degree of repeated radical extensions. (English) Zbl 07451291

L. J. Mordell [Pac. J. Math. 3, 625–630 (1953; Zbl 0051.26801)] proposed the following problem: let \(K\) be an algebraic number field and \(x_1, x_2, \ldots, x_s\), be algebraic numbers of degrees \(n_1, n_2, \ldots, n_s\), over \(K\), respectively. When does the field \(K(x_1, x_2,\ldots, x_s)\) have degree \(n_1n_2\ldots n_s\) over \(K\)?
Many authors have studied this problem in the case of repeated radical extensions \(K(x_1, x_2,\ldots, x_s)\) of \(K\) (this means that for each \(i\), \(1\leq i \leq s\), some power \({x_i}^{n_i}\) of \(x_i\) lies in \(K\)). More precisely, the special case of radical extension \(K(x_1)\) was solved by K. Th. Vahlen [Acta Math. 19, 195–198 (1895; JFM 26.0121.02)] if \(K = Q\), A. Capelli [Napoli Rend. (3) 3, 243–252 (1897; JFM 28.0090.01)] if \(K\) is an arbitrary field of characteristic \(0\), and [L. Redei, Algebra. Vol. 1. Oxford: Pergamon Press (1967; Zbl 0191.00502)] in general. Under the Kummerian hypothesis, the case \(s> 1\) has been studied by H. Hasse [Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. 2. Aufl. Würzburg etc.: Physica-Verlag (1965; Zbl 0138.03202)] and without this hypothesis by A. S. Besicovitch [J. Lond. Math. Soc. 15, 3–6 (1940; Zbl 0026.20301)]. Their results are contained in the following theorem of Mordell. If \(K\) contains all the \(n_1\)-th, \(n_2\)-th,…, \(n_s\)-th roots of unity, or that \(K\) is a subfield of \(\mathbb{R}\) with all \(x_1,\ldots, x_s\) are real, then the extension \(K(x_1, x_2, x_s) \) has degree \(n_1\ldots n_s\) over \(K\) if and only if there exists no relation of the form \({x_1}^{\varepsilon_1}\ldots {x_s}^{\varepsilon_s}=a\), where \(a\) is a number in \(K\), unless \(\varepsilon_1 = 0\pmod{n_1}, \varepsilon_2 = 0\pmod{n_2}, \ldots, \varepsilon_s = 0\pmod{n_s}\).
The aim of this paper (under review) is to give necessary and sufficient conditions for \[ [F(\sqrt[n_1]{M_1},\ldots, \sqrt[n_s]{M_s}): F] = n_1 \ldots n_s, \] where \(F\) is an arbitrary field of characteristic not dividing any \(n_i\) and \(M_1,\ldots, M_s\in F\). In particular, the above problem posed by Mordell in the case of repeated radical extensions has been solved. By virtue of Isaacs’ result [I. M. Isaacs, Proc. Am. Math. Soc. 25, 638–641 (1970; Zbl 0203.34902)], the author (of the paper under review) also pointed out that the relation \[ F[\sqrt[n_1]{M_1},\ldots, \sqrt[n_s]{M_s}]=F[b_1\sqrt[n_1]{M_1}+\cdots + b_s\sqrt[n_s]{M_s}] \] holds, under certain conditions, for any nonzero \(b_1, \ldots, b_s\in F\).


12F05 Algebraic field extensions
12F10 Separable extensions, Galois theory
12E05 Polynomials in general fields (irreducibility, etc.)
Full Text: DOI arXiv


[1] Albu, T., Kummer extensions with few roots of unity. J. Number Theory41(1992), 322-358. https://doi.org/10.1016/0022-314X(9)90131-8
[2] Besicovitch, A. S., On the linear independence of fractional powers of integers. J. Lond. Math. Soc.15(1940) 3-6. https://doi.org/10.1112/jlms/s1-15.1.3 · Zbl 0026.20301
[3] Cagliero, L. and Szechtman, F., On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras.Canad. Math. Bull.57(2014), 735-748. https://doi.org/10.4153/CMB-2013-046-9 · Zbl 1333.17007
[4] Capelli, A., Sulla riduttibilitá delle equazioni algebriche. Nota prima. Rend. Accad. Sci. Fis. Mat. Soc. Napoli3(1897), 243-252. · JFM 28.0090.01
[5] Carr, R. and O’Sullivan, C., On the linear independence of roots.Int. J. Number Theory5(2009), 161-171. https://doi.org/10.1142/S1793042109002018
[6] Diviš, B., On the degrees of the sum and product of two algebraic elements. In: Number theory and algebra, Academic Press, New York, 1977, pp. 19-27. · Zbl 0371.12030
[7] Flanders, H., Advanced problems and solutions: Solutions 4797.Amer. Math Monthly67(1960), 188-189.
[8] Hasse, H., Klasssenkörpertheorie. Mimeographed lectures, Marburg, 1932-33, pp. 187-195.
[9] Isaacs, I. M., Degrees of sums in a separable field extension. Proc. Amer. Math. Soc.25(1970), 638-641. https://doi.org/10.2307/2036661 · Zbl 0203.34902
[10] Mordell, L. J., On the linear independence of algebraic numbers. Pacific J. Math.3(1953), 625-630. · Zbl 0051.26801
[11] Rédei, L., Algebra, Vol.1. Pergamon Press, Oxford, 1967.
[12] Richards, I., An application of Galois theory to elementary arithmetic. Adv. in Math.13(1974) 268-273. https://doi.org/10.1016/0001-8708(74)90070-X · Zbl 0292.12002
[13] Roth, R. L., On extension of \(\mathbb{Q}\) by square roots.Amer. Math Monthly78(1971), 392-393. https://doi.org/10.2307/2316910 · Zbl 0223.12101
[14] Siegel, C. L., Algebraische Abhängigkeit von Wurzein. Acta Arith.21(1972), 59-64. https://doi.org/10.4064/aa-21-1-59-64 · Zbl 0254.10030
[15] Ursell, H. D., The degree of radical extensions. Canad. Math. Bull.17(1974), 615-617. https://doi.org/10.4153/CMB-1974-114-x · Zbl 0315.12002
[16] Vahlen, K. T., Über reductible Binome. Acta Math.19(1895), 195-198. https://doi.org/10.1007/BF02402875 · JFM 26.0121.02
[17] Vinogradov, I. M., Elements of number theory. Dover, New York, 2016.
[18] Zhou, J.-P., On the degree of extensions generated by finitely many algebraic numbers. J. Number Theory34(1990), 133-141. https://doi.org/10.1016/0022-314X(90)90144-G · Zbl 0719.11080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.