×

A note on generalized Krull domains. (English) Zbl 1307.13002

Let \(D\) be an integral domain with quotient field \(K\) and let \(F(D)\) denote the set of nonzero fractional ideals of \(D.\) Set \(I^{-1}=\{x\in K:xI\subseteq D\},~I_{v}=(I^{-1})^{-1}\) and \(I_{t}=\bigcup \{F_{v}:0\neq F\) is a finitely generated subideal of \(I\}.\) The operations \(v\) and \(t\) defining the relations \(A\mapsto A_{v},A_{t}\) are functions on \(F(D)\) that are examples of star operations. A fractional ideal \(I\) is a \(\;v\)-ideal if \( I=I_{v}\) (resp., a \(t\)-ideal if \(I=I_{t})\), \(t\)-invertible if \( (II^{-1})_{t}=D\) and \(v\)-finite if \(I=J_{v}\) for a finitely generated ideal \( J.\) Also an integral ideal \(I\) maximal w.r. t. being a \(t\)-ideal is a prime ideal called a maximal \(t\)-ideal (see sections 32, 34 of R. Gilmer’s [Multiplicative ideal theory. York: Marcel Dekker, Inc. (1972; Zbl 0248.13001)] and/or the reviewer’s [M. Zafrullah, in: Non-Noetherian commutative ring theory. Dordrecht: Kluwer Academic Publishers. 429–457 (2000; Zbl 0988.13003)] for details). One example of the use of star operations in defining new concepts from old is the notion of a Prüfer \(v\)-multiplication domain (PVMD) from Prüfer domains. To see this note that (1) \(D\) is a Prüfer domain (resp., PVMD) if every nonzero ideal is invertible (resp., \(t\)-invertible). (2) \(D\) is a Prüfer domain (resp., PVMD) if and for every maximal ideal (maximal \(t\)-ideal) \(P,\) \(D_{P}\) is a valuation domain. The list can go on. But let’s note it wasn’t this easy when these results were proved, same with the results mentioned in the paper under review.
A valuation domain \(V\) is called strongly discrete if for every nonzero prime ideal \(P\) of \(R\) we have \(P^{2}\neq P\) and a Prüfer domain \(D\) is called strongly discrete if for every nonzero prime ideal \(P\) of \(D\) we have \(D_{P}\) strongly discrete. It turns out that a Prüfer domain \(D\) is strongly discrete if and only if for every nonzero prime ideal \(P\) we have \(P^{2}\neq P.\) A Prüfer domain \(D\) is called a generalized Dedekind domain if \(D\) is strongly discrete and every nonzero prime ideal of \(D\) is the radical of a finitely generated ideal. Generalized Dedekind domains were introduced by N. Popescu in [Rev. Roum. Math. Pures Appl. 29, 777–786 (1984; Zbl 0564.13011)] and further studied by M. Fontana and N. Popescu in [Commun. Algebra 23, No. 12, 4521–4533 (1995; Zbl 0835.13004)] and by B. Olberding in [J. Lond. Math. Soc., II. Ser. 80, No. 1, 155–170 (2009; Zbl 1198.13006)]. (These domains are not to be confused with G-Dedekind domains \(D\) of the reviewer, characterized by: \(A_{v}\) is invertible for each nonzero ideal \(A\) [Mathematika 33, 285–295 (1986; Zbl 0613.13001)].) The point is, the first author of the paper under review introduced, via the \(t\)-operation, the strongly discrete PVMDs as PVMDs whose prime \(t\)-ideal \(P\) satisfy \((P^{2})_{t}\neq P,\) and generalized Krull domains as strongly discrete PVMDs whose prime \(t\)-ideals are each a radical of a \(v\)-finite ideal [Commun. Algebra 30, No. 8, 3723–3742 (2002; Zbl 1054.13001)].
In the paper under review, the authors develop the theory of generalized Krull domains still further. They say that a domain \(D\) has Mori spectrum if the induced topology on \(t-\mathrm{Spec}(D)\) by the Zariski topology on \(\mathrm{Spec}(D)\) is Noetherian. Here \(t-\mathrm{Spec}(D)\) denotes the set of prime \(t\)-ideals of \(D.\) They show via Proposition 2.1 that \(D\) having Mori spectrum is equivalent to every radical \(t\)-ideal being \(v\)-finite. Thus showing in Theorem 2.2 that \(D \) is a generalized Krull domain if and only if \(D\) is a strongly discrete PVMD with Mori spectrum. They also show in Proposition 2.9 that a generalized Krull domain is a strongly discrete PVMD of finite \(t\)-character (every nonzero element belongs to at most a finite number of maximal \(t\)-ideals). They also study generalized Krull domains with torsion class group. Next, in section 4, the authors show that if \(L\) is a finite extension of \(K\), then the integral closure \(T\) of \(D\) in \(L\) is a generalized Krull domain, if \(D\) is. Some characterizations of generalized Krull domains are included at the end. In short the paper is laden with interesting results.
Reviewer’s remarks: Recall that a PVMD \(D\) with torsion class group is an almost GCD domain: For each pair \(a,b\in D\backslash \{0\}\) there is a positive integer \(n\) such that \(a^{n}D\cap b^{n}D\) is principal, see e.g. Theorem 3.1 of D. D. Anderson and the reviewer in [J. Algebra 142, No. 2, 285–309 (1991; Zbl 0749.13013)]. This information, coupled with a study of T. Dumitrescu et al. [J. Algebra 245, No. 1, 161–181 (2001; Zbl 1094.13537)], can, hopefully, give a more satisfying description of the nonzero elements of a generalized Krull domain with torsion class group.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13B25 Polynomials over commutative rings
13E99 Chain conditions, finiteness conditions in commutative ring theory
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13G05 Integral domains
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson D. F., Comm. Algebra 16 pp 847– (1988)
[2] DOI: 10.1016/0022-4049(93)90097-D · Zbl 0777.13002 · doi:10.1016/0022-4049(93)90097-D
[3] DOI: 10.1090/S0002-9947-1973-0316451-8 · doi:10.1090/S0002-9947-1973-0316451-8
[4] DOI: 10.1080/00927878408823127 · Zbl 0562.13013 · doi:10.1080/00927878408823127
[5] DOI: 10.1090/surv/006 · doi:10.1090/surv/006
[6] DOI: 10.1080/00927878908823879 · Zbl 0691.13015 · doi:10.1080/00927878908823879
[7] Dobbs D. E., Proc. Amer. Math. Soc. 109 pp 637– (1990)
[8] S. El Baghdadi, Rings, Modules, Algebras and Abelian Groups, Lect Notes in Pure and Applied Mathematics 236 (Marcel Dekker, New York, 2004) pp. 149–160.
[9] DOI: 10.1081/AGB-120005815 · Zbl 1054.13001 · doi:10.1081/AGB-120005815
[10] DOI: 10.1080/00927870903114961 · Zbl 1203.13002 · doi:10.1080/00927870903114961
[11] DOI: 10.1081/AGB-120027969 · Zbl 1120.13016 · doi:10.1081/AGB-120027969
[12] DOI: 10.1016/j.jalgebra.2004.11.016 · Zbl 1094.13037 · doi:10.1016/j.jalgebra.2004.11.016
[13] DOI: 10.1080/00927870601169283 · Zbl 1118.13021 · doi:10.1080/00927870601169283
[14] DOI: 10.1016/0022-4049(94)90030-2 · Zbl 0845.13005 · doi:10.1016/0022-4049(94)90030-2
[15] DOI: 10.1142/S0219498803000349 · Zbl 1055.13002 · doi:10.1142/S0219498803000349
[16] DOI: 10.1006/jabr.1995.1077 · Zbl 0844.13012 · doi:10.1006/jabr.1995.1077
[17] DOI: 10.1080/00927879508825483 · Zbl 0835.13004 · doi:10.1080/00927879508825483
[18] DOI: 10.1007/978-3-642-88405-4 · doi:10.1007/978-3-642-88405-4
[19] DOI: 10.1016/j.jpaa.2004.05.002 · Zbl 1087.13011 · doi:10.1016/j.jpaa.2004.05.002
[20] DOI: 10.1016/0021-8693(66)90025-1 · Zbl 0146.26205 · doi:10.1016/0021-8693(66)90025-1
[21] DOI: 10.1016/0021-8693(67)90073-7 · Zbl 0156.04304 · doi:10.1016/0021-8693(67)90073-7
[22] Gilmer R., Queen’s Papers in Pure and Applied Mathematics 90, in: Multiplicative Ideal Theory (1992)
[23] DOI: 10.1112/S0025579300002813 · Zbl 0201.37202 · doi:10.1112/S0025579300002813
[24] DOI: 10.1016/0021-8693(88)90135-4 · Zbl 0641.13001 · doi:10.1016/0021-8693(88)90135-4
[25] DOI: 10.1016/0022-4049(86)90060-5 · Zbl 0605.13001 · doi:10.1016/0022-4049(86)90060-5
[26] DOI: 10.1016/0021-8693(89)90040-9 · Zbl 0668.13002 · doi:10.1016/0021-8693(89)90040-9
[27] DOI: 10.1016/0021-8693(89)90131-2 · Zbl 0694.13011 · doi:10.1016/0021-8693(89)90131-2
[28] DOI: 10.1080/00927870600639476 · Zbl 1099.13024 · doi:10.1080/00927870600639476
[29] DOI: 10.4134/JKMS.2011.48.1.191 · Zbl 1207.13002 · doi:10.4134/JKMS.2011.48.1.191
[30] A. Mimouni, Commutative Rings (Nova Science Publisher, Hauppauge, NY, 2002) pp. 61–76.
[31] DOI: 10.1006/jabr.1997.7406 · Zbl 0928.13013 · doi:10.1006/jabr.1997.7406
[32] DOI: 10.1112/jlms/jdp017 · Zbl 1198.13006 · doi:10.1112/jlms/jdp017
[33] Popescu N., Rev. Roumaine Math. Pures Appl. 29 pp 777– (1984)
[34] Popescu E. L., Rev. Roumaine Math. Pures Appl. 40 pp 527– (1995)
[35] Popescu E. L., Rev. Roumaine Math. Pures Appl. 48 pp 535– (2003)
[36] Samuel P., Commutative Algebra 1 (1958)
[37] Wang F., Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 27 pp 1– (2004)
[38] DOI: 10.1080/00927879708825920 · Zbl 0895.13010 · doi:10.1080/00927879708825920
[39] DOI: 10.1016/S0022-4049(97)00150-3 · Zbl 0943.13017 · doi:10.1016/S0022-4049(97)00150-3
[40] DOI: 10.1007/978-1-4757-3180-4_20 · doi:10.1007/978-1-4757-3180-4_20
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.