×

A new topological method for the study of asymptotic behavior of Caratheodory systems. (English) Zbl 0482.34049


MSC:

34E10 Perturbations, asymptotics of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bebernes, Atti Acad. Naz. Lencei Rend. Cl. Shi. Fis Mat. Natur. pp 39– (1970)
[2] Hartman, Amer, J. Math. 77 pp 45– (1955)
[3] Jackson, SIAM J. Math. 20 pp 124– (1971)
[4] Kartsatos, J. Differential Equations 11 pp 582– (1972)
[5] über die Lösungen eines Systems gewöhnlicher Differentialgleichungen das der Lipschitzschen Bedingungen nicht genügt, S-B. Preuss. Akad. Wiss. Phys.-Math. Kl. 171–174 (1923). · JFM 49.0302.03
[6] Levinson, Duke Math. J. 15 pp 111– (1948)
[7] Lewowicz, Publicaciones del Instituto de Matematica y Estadistica de la Facultad de Ingenieria y Agrimensura, Montevideo, Uruguay 3 pp 125– (1960)
[8] Nakagiri, Proc. Japan Acad. 50 pp 296– (1974)
[9] Onuchic, Pasific J. Math. 11 pp 1511– (1961) · Zbl 0105.29201
[10] Palamides, J. Differential Equations 36 pp 442– (1980)
[11] Wa\.zweski’s topological method for Caratheodory systems, submitted.
[12] Topological properties of asymptotic solutions in R-almost compact sets, of Caratheodory systems, submitted.
[13] Palamides, Funkcial. Ekvac. 23 pp 25– (1980)
[14] Staikos, Bull. Soc. Math. Grèce (N.S.) 13 pp 1– (1972)
[15] Szmydtówna, Ann. Soc. Polon. Math. 24 pp 17– (1951)
[16] Wa\.zwski, Ann. Soc. Math. Polon. 20 pp 279– (1947)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.