Lima, Davi; Matheus, Carlos; Moreira, Carlos G.; Romaña, Sergio Classical and dynamical Markov and Lagrange spectra. Dynamical, fractal and arithmetic aspects. (English) Zbl 1484.11001 Hackensack, NJ: World Scientific (ISBN 978-981-12-2528-4/hbk; 978-981-12-2530-7/ebook). xiii, 213 p. (2021). Reviewer: Oto Strauch (Bratislava) MSC: 11-02 37-02 11K60 11J06 37A44 37Pxx × Cite Format Result Cite Review PDF Full Text: DOI
Xu, Shaoyuan; Su, Weiyi Elementary density bounds for self-similar sets and application. (English) Zbl 1150.28007 Anal. Theory Appl. 23, No. 4, 334-342 (2007). MSC: 28A78 28A80 × Cite Format Result Cite Review PDF Full Text: DOI
Freiling, Chris; Humke, Paul D.; Laczkovich, Miklós One old problem, one new, and their equivalence. (English) Zbl 1038.26003 Tatra Mt. Math. Publ. 24, No. 2, 169-174 (2002). Reviewer: W. T. Whitley (MR 2003:26002) MSC: 26A03 28A05 54C30 × Cite Format Result Cite Review PDF
Bărbulescu, Alina About the positivity of the Hausdorff H-measure. (English) Zbl 1035.28007 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 8, No. 1, 17-24 (2000). MSC: 28A78 × Cite Format Result Cite Review PDF
Schlag, W. A geometric inequality with applications to the Kakeya problem in three dimensions. (English) Zbl 0939.42012 Geom. Funct. Anal. 8, No. 3, 606-625 (1998). Reviewer: Yves Rakotondratsimba (Cergy-Pontoise) MSC: 42B25 42B20 × Cite Format Result Cite Review PDF Full Text: DOI
Falconer, Kenneth Fractal geometry: mathematical foundations and applications. (English) Zbl 0871.28009 Chichester: John Wiley & Sons (ISBN 0-471-96777-7/pbk). xxii, 288 p. (1997). MSC: 28A80 28-02 28A78 37D45 37B99 37C70 54H20 × Cite Format Result Cite Review PDF
Kigami, Jun Hausdorff dimensions of self-similar sets and shortest path metrics. (English) Zbl 0851.28002 J. Math. Soc. Japan 47, No. 3, 381-404 (1995). Reviewer: C.Karanikas (Thessaloniki) MSC: 28A80 28A78 × Cite Format Result Cite Review PDF Full Text: DOI
Falconer, Kenneth T. [Meyer, Jens] Fractal geometry: mathematical foundations and applications. Transl. from the Engl. by Jens Meyer. (Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Engl. von Jens Meyer.) (German) Zbl 0782.28003 Heidelberg: Spektrum Akademischer Verl. (ISBN 3-86025-075-2/hbk). 340 p. (1993). MSC: 28A80 28-02 37D45 28A78 37B99 37C70 × Cite Format Result Cite Review PDF
Jin, Ning Symmetric groups and attractors. (English) Zbl 0877.54035 J. Nanjing Univ., Nat. Sci. Ed. 28, No. 3, 362-367 (1992). MSC: 54H20 37C70 54H15 51F99 × Cite Format Result Cite Review PDF
Bandt, Christoph Deterministic fractals and fractal measures. (English) Zbl 0791.28005 Rend. Ist. Mat. Univ. Trieste 23, 1-40 (1991). Reviewer: C.Karanikas (Thessaloniki) MSC: 28A80 28A78 37D45 37A99 × Cite Format Result Cite Review PDF
Falconer, Kenneth Fractal geometry: mathematical foundations and applications. (English) Zbl 0689.28003 Chichester etc.: John Wiley & Sons (ISBN 0-471-92287-0). xxii, 288 p. (1990). Reviewer: P.Mattila MSC: 28A75 28-02 37C70 54H20 × Cite Format Result Cite Review PDF
Yin, Qinghe; Yuan, Jinchen A discussion on the proof of a lemma. (Chinese. English summary) Zbl 0736.28004 Math. Appl. 2, No. 2, 83-88 (1989). MSC: 28A80 × Cite Format Result Cite Review PDF
Mattila, Pertti Lecture notes on geometric measure theory. (English) Zbl 0638.28006 Publicaciones del Departamento de Matemáticas, Universidad de Extremadura, 14. Badajoz (España): Universidad de Extremadura, Facultad de Ciencias, Departamento de Matemáticas. V, 122 p. (1986). Reviewer: I.S.Molchanov MSC: 28A75 49Q15 28-02 × Cite Format Result Cite Review PDF
Barnsley, Michael F. Fractal functions and interpolation. (English) Zbl 0606.41005 Constructive Approximation 2, 303-329 (1986). Reviewer: C.Mustăţa MSC: 41A05 94A24 × Cite Format Result Cite Review PDF Full Text: DOI
Falconer, K. J. Sets with prescribed projections and Nikodým sets. (English) Zbl 0602.28005 Proc. Lond. Math. Soc., III. Ser. 53, 48-64 (1986). Reviewer: P.Mattila MSC: 28A75 × Cite Format Result Cite Review PDF Full Text: DOI