Some new families of finite elements for the Stokes equations. (English) Zbl 0708.76088

Summary: We introduce a way of using the mixed finite element families of P. A. Raviart and J. M. Thomas [Math. Aspects Finite Elem. Mech., Proc. Conf. Rome 1975, Lect. Notes Math. 606, 292-315 (1977; Zbl 0362.65089)] and J.-C. Nedelec [Numer. Math. 35, 315-341 (1980; Zbl 0436.65087)], and F. Brezzi et al. [e.g. with J. Douglas, R. Durán, M. Fortin, ibid. 51, 237-250 (1987; Zbl 0631.65107)], for constructing stable and optimally convergent discretizations for the Stokes problem.


76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI EuDML


[1] Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO. M2AN,19, 7-32 (1985) · Zbl 0567.65078
[2] Babu?ka, I., Osborn, J.E., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput.35, 1039-1062 (1980) · Zbl 0472.65083
[3] Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Ser. Rouge8, 129-151 (1974) · Zbl 0338.90047
[4] Brezzi, F., Douglas, J.: Stabilized mixed methods for Stokes problem. Numer. Math.53, 225-236 (1988) · Zbl 0669.76052
[5] Brezzi, F., Douglas, J., Durán, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math.51, 237-250 (1987) · Zbl 0631.65107
[6] Brezzi, F., Douglas, J., Fortin, M., Marini, L.D.: Efficient rectangular mixed finite elements in two and three space variables. RAIRO. M2AN21, 181-204 (1987) · Zbl 0689.65065
[7] Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic equations. Numer. Math.47, 19-34 (1985) · Zbl 0599.65072
[8] Brezzi, F. Marini, L.D., Pietra, P.: Two-dimensional exponential fitting and applications to semiconductor device equations. SIAM J. Num. Anal. (to appear) · Zbl 0686.65088
[9] Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations for the Stokes problem. In: Hackbusch, W. (ed.) Notes on numerical fluid mechanics, Vol. 10, pp. 11-19. Braunschweig: Vieweg 1984
[10] Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978 · Zbl 0383.65058
[11] Douglas, J., Santos, J.E.: Approximation of waves in composite media, the mathematics of finite elements and applications VI. MAFELAP 1987. In: Whiteman, J.R. (ed.), pp. 55-74. London: Academic Press 1988
[12] Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. Theory and algorithms. Heidelberg Berlin New York: Springer 1986 · Zbl 0585.65077
[13] Nedelec, J.C.: Mixed finite elements in ?3. Numer. Math.35, 315-341 (1980) · Zbl 0419.65069
[14] Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. Proceedings of the Symposium on the Mathematical Aspects of the Finite Element Method. Lect. Notes Math.606, 292-315, Springer 1977 · Zbl 0362.65089
[15] Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Number. Math.48, 447-462 (1986) · Zbl 0563.65072
[16] Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math.53, 513-538 (1988) · Zbl 0632.73063
[17] Stenberg, R.: Postprocessing schemes for some mixed finite elements. Rapport de recherche No. 800, INRIA Fevier 1988. SIAM J. Num. Anal. (to appear)
[18] Verfürth, R.: Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer.18, 175-182 (1984) · Zbl 0557.76037
[19] Wheeler, M., Gonzales, R.: Mixed finite element methods for petroleum reservoir simulation. In: Glowinski, R., Lions, J.L. (eds.) Computing methods in applied sciences and engineering, VI, pp. 639-658. Amsterdam: North-Holland 1984
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.