×

Large deviations for the occupation time functional of a Poisson system of independent Brownian particles. (English) Zbl 0813.60029

The authors study the large deviations and the central limit theorem for the occupation time functional of a Poisson system of independent Brownian particles in \(\mathbb{R}^ d\). They extend the results of J. T. Cox and D. Griffeath for random walks [Z. Wahrscheinlichkeitstheorie Verw. Geb. 66, 543-558 (1984; Zbl 0551.60028)] and partially the results of T.-Y. Lee [Ann. Probab. 16, No. 4, 1537-1558 (1988; Zbl 0661.60046) and ibid. 17, No. 1, 46-57 (1989; Zbl 0664.60032)] to functional spaces. The order of the large deviations remains the same, namely \(T^{1/2}\) and \(T/ \log T\) in the recurrent dimensions one and two, and \(T\) for the higher transient dimensions. Explicit expressions for the corresponding rate functions and covariance functionals are given and a specific microcanonical principle is considered. In one dimension the function-space rate function is not the standard one; thus an untypical end point is reached via a nonlinear profile.

MSC:

60F10 Large deviations
60F05 Central limit and other weak theorems
60J65 Brownian motion
82C21 Dynamic continuum models (systems of particles, etc.) in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[2] Borodin, A. N., Brownian local time, Russian Math. Surveys, 44, 2, 1-51 (1989) · Zbl 0697.60080
[3] Cox, J. T.; Durrett, R., Large deviations for independent random walks, Probab. Theory Rel. Fields, 84, 67-82 (1990) · Zbl 0692.60028
[4] Cox, J. T.; Griffeath, D., Large deviations for Poisson systems of independent random walks, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 66, 543-558 (1984) · Zbl 0551.60028
[5] Deuschel, J.-D.; Stroock, D. W., Large Deviations (1989), Academic Press: Academic Press New York · Zbl 0682.60018
[6] Deuschel, J.-D.; Stroock, D. W., A function space large deviation principle for certain stochastic integrals, Probab. Theory Rel. Fields, 83, 279-307 (1989) · Zbl 0682.60018
[7] Deuschel, J.-D.; Stroock, D. W.; Zessin, H., Microcanonical distributions for lattice gases, Comm. Math. Phys., 139, 83-101 (1991) · Zbl 0727.60025
[8] Donsker, M. D.; Varadhan, S. R.S., Large deviations for noninteracting infinite-particle systems, J. Statist. Phys., 46, 1195-1232 (1987) · Zbl 0682.60020
[9] Ellis, R. S., Entropy, Large Deviations, and Statistical Mechanics (1985), Springer: Springer Berlin · Zbl 0566.60097
[10] Karlin, S.; Taylor, H. M., (A First Course in Stochastic Process (1975), Academic Press: Academic Press New York) · Zbl 0315.60016
[11] Lee, T. Y., Large deviations for noninteracting infinite particle systems, The Ann. Probab., 16, 1537-1558 (1988) · Zbl 0661.60046
[12] Lee, T. Y., Large deviations for systems of noninteracting recurrent particles, The Ann. Probab., 17, 1, 46-57 (1989) · Zbl 0664.60032
[13] Lee, T. Y.; Remillard, B., Occupation times in systems of null recurrent Markov processes, Probab. Theory Rel. Fields, 98, 245-260 (1994) · Zbl 0792.60027
[14] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion (1991), Springer: Springer Berlin · Zbl 0731.60002
[15] Zabreyko, P. P.; Koshelev, A. I.; Krasnosel’skii, M. A.; Mikhlin, S. G.; Rakovshchik, L. S.; Stet’senko, V. Y., Integral Equations — A Reference Text (1975), Noordhoff: Noordhoff Leyden · Zbl 0293.45001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.