Pan, Hongjing; Xing, Ruixiang A note on the nonexistence of solutions for prescribed mean curvature equations on a ball. (English) Zbl 1235.35144 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 18, 7437-7445 (2011). Summary: We prove the nonexistence of solutions for a prescribed mean curvature equation \[ \begin{cases} -\text{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=\lambda|u|^{p-1}u,\quad & x\in{\mathcal B}_R\subseteq\mathbb{R}^n,\\ u=0,\quad & x\in\partial{\mathcal B}_R,\end{cases} \] when \(p\geq 1\) and the positive parameter \(\lambda\) is small. The result extends theorems of K. Narukawa and T. Suzuki [Boll. Unione Mat. Ital., VII. Ser., B 4, No. 1, 223–241 (1990; Zbl 0702.76024)], and R. Finn [in: Continuum mechanics and related problems of analysis. Proceedings of the international symposium. Dedicated to the centenary of academician N. Muskhelishvili. June 6-11, 1991, Tbilisi (Georgia). Tbilisi: Metsniereba. 127–139 (1993; Zbl 0884.35017)], from the case of \(n=2\), \(p=1\) to all \(n\geq 2\), \(p\geq 1\). Moreover, our proof is very simple and the result is not limited to positive (and negative) solutions. We also show that a similar result for positive solutions is still true if \(|u|^{p-1}u\) is replaced by the exponential nonlinearity \(e^u-1\). Cited in 8 Documents MSC: 35J93 Quasilinear elliptic equations with mean curvature operator 35B32 Bifurcations in context of PDEs Keywords:prescribed mean curvature equation; radial solution; nonexistence; time map; quasilinear problem; exponential nonlinearity; power nonlinearity Citations:Zbl 0702.76024; Zbl 0884.35017 PDF BibTeX XML Cite \textit{H. Pan} and \textit{R. Xing}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 18, 7437--7445 (2011; Zbl 1235.35144) Full Text: DOI References: [1] Finn, R., Equilibrium Capillary Surfaces (1986), Springer-Verlag: Springer-Verlag New York · Zbl 0583.35002 [2] Wente, H. C., The symmetry of sessile and pendent drops, Pacific J. Math., 88, 2, 387-397 (1980) · Zbl 0473.76086 [3] Narukawa, K.; Suzuki, T., Nonlinear eigenvalue problem associated to capillary surfaces, Boll. Un. Mat. Ital. B (7), 4, 1, 223-241 (1990) · Zbl 0702.76024 [4] Finn, R., Green’s identities and pendent liquid drops. II, (Continuum Mechanics and Related Problems of Analysis. Continuum Mechanics and Related Problems of Analysis, Tbilisi, 1991 (1993), Metsniereba: Metsniereba Tbilisi), 127-139 · Zbl 0884.35017 [5] Ni, W.-M.; Serrin, J., Nonexistence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2), 8, 171-185 (1985) · Zbl 0625.35028 [6] Lions, P.-L., On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24, 4, 441-467 (1982) · Zbl 0511.35033 [7] Nakao, M., A bifurcation problem for a quasi-linear elliptic boundary value problem, Nonlinear Anal., 14, 3, 251-262 (1990) · Zbl 0693.35005 [8] Habets, P.; Omari, P., Multiple positive solutions of a one-dimensional prescribed mean curvature problem, Commun. Contemp. Math., 9, 5, 701-730 (2007) · Zbl 1153.34015 [9] Pan, H.; Xing, R., Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations, Nonlinear Anal., 74, 1234-1260 (2011) · Zbl 1218.34020 [10] Capietto, A.; Dambrosio, W.; Zanolin, F., Infinitely many radial solutions to a boundary value problem in a ball, Ann. Mat. Pura Appl. (4), 179, 159-188 (2001) · Zbl 1030.35071 [11] Coffman, C. V.; Ziemer, W. K., A prescribed mean curvature problem on domains without radial symmetry, SIAM J. Math. Anal., 22, 4, 982-990 (1991) · Zbl 0741.35010 [12] Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 3, 209-243 (1979) · Zbl 0425.35020 [13] Obersnel, F., Classical and non-classical sign-changing solutions of a one-dimensional autonomous prescribed curvature equation, Adv. Nonlinear Stud., 7, 4, 671-682 (2007) · Zbl 1140.34322 [14] Bonheure, D.; Habets, P.; Obersnel, F.; Omari, P., Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations, 243, 2, 208-237 (2007) · Zbl 1136.34023 [15] Burns, M.; Grinfeld, M., Steady state solutions of a bi-stable quasi-linear equation with saturating flux, Eur. J. Appl. Math., First View, 1-15 (2011) · Zbl 1219.35186 [16] Pan, H.; Xing, R., Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II, Nonlinear Anal., 74, 3751-3768 (2011) · Zbl 1248.34016 [17] Serrin, J., Positive solutions of a prescribed mean curvature problem, (Calculus of Variations and Partial Differential Equations. Calculus of Variations and Partial Differential Equations, Trento, 1986. Calculus of Variations and Partial Differential Equations. Calculus of Variations and Partial Differential Equations, Trento, 1986, Lecture Notes in Math., vol. 1340 (1988), Springer: Springer Berlin), 248-255 [18] Pan, H., One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal., 70, 2, 999-1010 (2009) · Zbl 1159.34314 [19] Clément, P.; Manásevich, R.; Mitidieri, E., On a modified capillary equation, J. Differential Equations, 124, 2, 343-358 (1996) · Zbl 0841.34038 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.