Lang, Jan; Méndez, Osvaldo Convergence properties of modular eigenfunctions for the \(p(\cdot)\)-Laplacian. (English) Zbl 1291.35152 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104, 156-170 (2014). Reviewer: Mihai Pascu (Bucureşti) MSC: 35P30 35J92 PDF BibTeX XML Cite \textit{J. Lang} and \textit{O. Méndez}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104, 156--170 (2014; Zbl 1291.35152) Full Text: DOI
Tian, Ya; Mu, Chunlai Extinction and non-extinction for a \(p\)-Laplacian equation with nonlinear source. (English) Zbl 1152.35046 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69, No. 8, 2422-2431 (2008). Reviewer: Peter Lindqvist (Trondheim) MSC: 35K20 35K55 35K65 PDF BibTeX XML Cite \textit{Y. Tian} and \textit{C. Mu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69, No. 8, 2422--2431 (2008; Zbl 1152.35046) Full Text: DOI
Agueh, Martial Rates of decay to equilibria for \(p\)-Laplacian type equations. (English) Zbl 1185.35017 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 7, 1909-1927 (2008). Reviewer: Peter Lindqvist (Trondheim) MSC: 35B40 35K55 35K65 35K15 PDF BibTeX XML Cite \textit{M. Agueh}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 7, 1909--1927 (2008; Zbl 1185.35017) Full Text: DOI
Lindqvist, Peter Addendum to “On the equation div\((|\nabla u|^{p-2}\nabla u)+\lambda| u|^{p-2}u=0\)”. (English) Zbl 0787.35027 Proc. Am. Math. Soc. 116, No. 2, 583-584 (1992). MSC: 35J60 35J70 35P30 35J20 PDF BibTeX XML Cite \textit{P. Lindqvist}, Proc. Am. Math. Soc. 116, No. 2, 583--584 (1992; Zbl 0787.35027) Full Text: DOI