Loops with exponent three in all isotopes. (English) Zbl 1337.20075

In this paper the results and proofs of the authors are a mix of the quasigroups and loops and Latin squares perspectives. From the quasigroup perspective, the authors are interested in properties that hold in all loop isotopes. The Latin square properties in which the authors are interested in are those invariant at the very least, under isotopy, that is, under permutations of the rows, of the columns and of the symbols.
G. H. J. van Rees has shown [in Ars Comb. 29B, 193-204 (1990; Zbl 0718.05014)] that a Latin square of order \(n\) has at most \(n^2(n-1)/18\) Latin subsquares of order 3. The authors show in this paper that it can only be achieved if \(n\equiv3\pmod 6\). The paper concentrates on the number of subsquares of order 3. The main result of this paper is Theorem 1.1, in Sec 1. In Sec 4, the authors examine a conjecture of van Rees regarding the possible orders of van Rees Latin squares, and show that such a square has order congruent to \(3\pmod 6\). In Sec 6, the authors show that on the underlying set of a van Rees loop there is a natural Steiner quasigroup structure (Theorem 6.3).


20N05 Loops, quasigroups
05B15 Orthogonal arrays, Latin squares, Room squares


Zbl 0718.05014


Prover9; GAP; Mace4; LOOPS
Full Text: DOI arXiv


[1] 1. P. Bartlett, Completions of \epsilon-dense partial Latin squares, J. Combin. Des.21 (2013) 447-463. genRefLink(16, ’S0218196715500356BIB001’, ’10.1002 · Zbl 1276.05015
[2] 2. J. Browning, P. J. Cameron and I. M. Wanless, Bounds on the number of small Latin subsquares, J. Combin. Theory Ser. A124 (2014) 41-56. genRefLink(16, ’S0218196715500356BIB002’, ’10.1016
[3] 3. J. Browning, D. S. Stones and I. M. Wanless, Bounds on the number of autotopisms and subsquares of a latin square, Combinatorica33 (2013) 11-22. genRefLink(16, ’S0218196715500356BIB003’, ’10.1007
[4] 4. J. Browning, P. Vojtěchovský and I. M. Wanless, Overlapping latin subsquares and full products, Comment. Math. Univ. Carolin.51 (2010) 175-184. · Zbl 1224.05061
[5] 5. R. H. Bruck, A Survey of Binary Systems (Springer-Verlag, 1971). genRefLink(16, ’S0218196715500356BIB005’, ’10.1007 · Zbl 0206.30301
[6] 6. D. Bryant, B. Maenhaut and I. M. Wanless, New families of atomic Latin squares and perfect one-factorisations, J. Combin. Theory Ser. A113 (2006) 608-624. genRefLink(16, ’S0218196715500356BIB006’, ’10.1016 · Zbl 1089.05058
[7] 7. P. J. Cameron, On groups with two triply transitive permutation representations, J. London Math. Soc.6(2) (1972) 122-128. genRefLink(16, ’S0218196715500356BIB007’, ’10.1112 · Zbl 0253.20008
[8] 8. N. J. Cavenagh, C. Greenhill and I. M. Wanless, The cycle structure of two rows in a random latin square, Random Structures Algorithms33 (2008) 286-309. genRefLink(16, ’S0218196715500356BIB008’, ’10.1002
[9] 9. T. Foguel and M. Kinyon, Uniquely 2-divisible Bol loops, J. Algebra Appl.9 (2010) 591-601. [Abstract] genRefLink(128, ’S0218196715500356BIB009’, ’000281665700005’); · Zbl 1219.20044
[10] 10. The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.10 (2007), http://www.gap-system.org.
[11] 11. E. G. Goodaire and D. A. Robinson, A class of loops which are isomorphic to all loop isotopes, Canad. J. Math.34 (1982) 662-672. genRefLink(16, ’S0218196715500356BIB011’, ’10.4153
[12] 12. J. I. Hall, Central automorphisms, Z\ast-theorems, and loop structure, Quasigroups Related Systems19 (2011) 69-108. · Zbl 1250.20060
[13] 13. K. Heinrich and W. D. Wallis, The maximum number of intercalates in a latin square, Lecture Notes in Math.884 (1981) 221-233. genRefLink(16, ’S0218196715500356BIB013’, ’10.1007 · Zbl 0475.05014
[14] 14. A. D. Keedwell, On the order of projective planes with characteristic, Rend. Mat. Appl.22(5) (1963) 498-530. · Zbl 0168.41307
[15] 15. A. D. Keedwell, A search for projective planes of a special type with the aid of a digital computer, Math. Comp.19 (1965) 317-322. genRefLink(16, ’S0218196715500356BIB015’, ’10.1090 · Zbl 0138.41604
[16] 16. D. Keedwell and J. Dénes, Latin Squares and Their Applications 2nd edn. (North Holland, Amsterdam, 2015).
[17] 17. M. K. Kinyon and K. Kunen, Power-associative, conjugacy closed loops, J. Algebra304 (2006) 679-711. genRefLink(16, ’S0218196715500356BIB017’, ’10.1016
[18] 18. B. M. Maenhaut and I. M. Wanless, Atomic Latin squares of order eleven, J. Combin. Designs12 (2004) 12-34. genRefLink(16, ’S0218196715500356BIB018’, ’10.1002
[19] 19. A. W. Marczak, On nondistributive Steiner quasigroups, Colloq. Math.74 (1997) 135-145. · Zbl 0891.05012
[20] 20. W. McCune, Prover9 and Mace4, version 2008-06A, http://www.cs.unm.edu/\simmccune/prover9/.
[21] 21. G. Nagy and P. Vojtěchovský, LOOPS: Computing with quasigroups and loops in GAP – a GAP package, version 2.0.0 (2008), http://www.math.du.edu/loops.
[22] 22. H. O. Pflugfelder, Quasigroups and Loops: Introduction, Sigma Series in Pure Mathemtics, Vol. 8 (Heldermann Verlag, Berlin, 1990). · Zbl 0715.20043
[23] 23. J. A. Thas and F. DeClerck, Partial geometries satisfying the axiom of Pasch, Simon Stevin51 (1977/78) 123-137.
[24] 24. G. H. J. van Rees, Subsquares and transversals in latin squares, Ars Combin.29B (1990) 193-204. genRefLink(128, ’S0218196715500356BIB024’, ’A1990DR80600017’); · Zbl 0718.05014
[25] 25. I. M. Wanless, Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles, Electron. J. Combin.6 (1999) R9. · Zbl 0915.05023
[26] 26. I. M. Wanless, Atomic Latin squares based on cyclotomic orthomorphisms, Electron. J. Combin.12 (2005) R22. · Zbl 1079.05016
[27] 27. I. M. Wanless, User homepage, http://users.monash.edu.au/\simiwanless/data/loops/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.