Combinatorial properties of rational representations of the group \(\text{GL}(n,\mathbb{C})\). (English. Russian original) Zbl 0836.20062

J. Math. Sci., New York 77, No. 3, 3190-3194 (1995); translation from Zap. Nauchn. Semin. POMI 200, 83-90 (1992).
See the review in Zbl 0797.20034.


20G05 Representation theory for linear algebraic groups
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
05E15 Combinatorial aspects of groups and algebras (MSC2010)


Zbl 0797.20034
Full Text: DOI


[1] D. E. Knuth,The Art of Computer Programming, Vol. 3, Addison-Wesley, London (1973). · Zbl 0191.17903
[2] J. R. Stembridge, ”Rational tableaux and the tensor algebra ofgl n ”,J. Comb. Theory (A),46, 79–120 (1987). · Zbl 0626.20030
[3] H. Weyl,The Classical Groups, Princeton, New Jersey (1946). · Zbl 1024.20502
[4] R. P. Stanley, ”Theory and applications of plain partitions”,Stud. Appl. Math.,50, 167–188 (1971). · Zbl 0225.05011
[5] I. G. Macdonald,Symmetric Functions and Hall Polynomials, Oxford University Press (1979). · Zbl 0487.20007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.