Analysis of a generalized penalty function in a semi-Markovian risk model. (English) Zbl 1483.91182

Summary: In this paper an extension of the semi-Markovian risk model studied by H. Albrecher and O. J. Boxma [Insur. Math. Econ. 37, No. 3, 650–672 (2005; Zbl 1129.91023)] is considered by allowing for general interclaim times. In such a model, we follow the ideas of E. C. K. Cheung et al. [Insur. Math. Econ. 46, No. 1, 117–126 (2010; Zbl 1231.91157)] and consider a generalization of the Gerber-Shiu function by incorporating two more random variables in the traditional penalty function, namely, the minimum surplus level before ruin and the surplus level immediately after the second last claim prior to ruin. It is shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation. Detailed examples are also considered when either the interclaim times or the claim sizes are exponentially distributed. Finally, we also consider the case where the claim arrival process follows a Markovian arrival process. Probabilistic arguments are used to derive the discounted joint distribution of four random variables of interest in this risk model by capitalizing on an existing connection with a particular fluid flow process.


91G05 Actuarial mathematics
60K10 Applications of renewal theory (reliability, demand theory, etc.)
Full Text: DOI


[1] Ahn, S., Badescu, A. L. and Ramaswami, V. 2007. Time Dependent Analysis of Finite Buffer Fluid Flows and Risk Models with a Dividend Barrier. Queueing Systems, 55(4): 207-222. · Zbl 1124.60067
[2] Ahn, S. and Ramaswami, V. 2005. Efficient Algorithms for Transient Analysis of Stochastic Fluid Flow Models. Journal of Applied Probability, 42(2): 531-49. · Zbl 1085.60065
[3] Albrecher, H. and Boxma, O. J. 2005. On the Discounted Penalty Function in a Markov-Dependent Risk Model. Insurance: Mathematics and Economics, 37(3): 650-72. · Zbl 1129.91023
[4] Asmussen, S. 1989. Risk Theory in a Markovian Environment. Scandinavian Actuarial Journal, 1989: 69-100. · Zbl 0684.62073
[5] Asmussen, S., Avram, F. and Usabel, M. 2002. Erlangian Approximations for Finite-Horizon Ruin Probabilities. ASTIN Bulletin, 32(2): 267-81. · Zbl 1081.60028
[6] Badescu, A. L., Breuer, L., Da Silva Soares, A., LatouChe, G., RemiChe, M.-A. and Stanford, D. 2005. Risk Processes Analyzed as Fluid Queues. Scandinavian Actuarial Journal, 2005(2): 127-41. · Zbl 1092.91037
[7] Badescu, A. L., Cheung, E. C. K. and Landriault, D. 2009. Dependent Risk Models with Bivariate Phase-Type Distributions. Journal of Applied Probability, 46(1): 113-31. · Zbl 1172.91009
[8] Badescu, A. L., DrekiC, S. and Landriault, D. 2007a. Analysis of a Threshold Dividend Strategy for a MAP Risk Model. Scandinavian Actuarial Journal, 2007(4): 227-47. · Zbl 1164.91024
[9] Badescu, A. L., Drekic, S. and Landriault, D. 2007b. On the Analysis of a Multi-threshold Markovian Risk Model. Scandinavian Actuarial Journal, 2007(4): 248-60. · Zbl 1164.91025
[10] Cheung, E. C. K., Landriault, D. and Badescu, A. L. 2009. On a Generalization of the Risk Model with Markovian Claim Arrivals submitted.
[11] Cheung, E. C. K., Landriault, D., Willmot, G. E. and Woo, J.-K. 2010a. Gerber-Shiu Analysis with a Generalized Penalty Function. Scandinavian Actuarial Journal, in press. · Zbl 1226.60123
[12] Cheung, E. C. K., Landriault, D., Willmot, G. E. and Woo, J.-K. 2010b. Structural Properties of Gerber-Shiu Functions in Dependent Sparre Andersen Models. Insurance: Mathematics and Economics, in press · Zbl 1231.91157
[13] Dickson, D. C. M. and Hipp, C. 2001. On the Time to Ruin for Erlang(2) Risk Processes. Insurance: Mathematics and Economics, 29(3): 333-44. · Zbl 1074.91549
[14] Gerber, H. U. and Shiu, E. S. W. 1998. On the Time Value of Ruin. North American Actuarial Journal, 2(1): 48-78. · Zbl 1081.60550
[15] Janssen, J. and Reinhard, J.-M. 1985. Probabilites de ruine pour une classe de modèles de risque semi-Markoviens. ASTIN Bulletin, 15(2): 123-34.
[16] Klugman, S. A., Panjer, H. H. and Willmot, G. E. 2008. Loss Models: From Data to Decisions, 3rd ed., New York: Wiley. · Zbl 1159.62070
[17] Landriault, D. and Willmot, G. E. 2008. On the Gerber-Shiu Discounted Penalty Function in the Sparre Andersen Model with an Arbitrary Interclaim Time Distribution. Insurance: Mathematics and Economics, 42(2): 600-608. · Zbl 1152.91591
[18] Landriault, D. and Willmot, G. E. 2009. On the Joint Distributions of the Time to Ruin, the Surplus Prior to Ruin, and the Deficit at Ruin in the Classical Risk Model. North American Actuarial Journal, 13(2): 252-70.
[19] Latouche, G. and Ramaswami, V. 1999. Introduction to Matrix Analytic Methods in Stochastic Modeling, Philadelphia: ASA SIAM. · Zbl 0922.60001
[20] Li, S. and Garrido, J. 2004. On Ruin for the Erlang(n) Risk Process. Insurance: Mathematics and Economics, 34(3): 391-408. · Zbl 1188.91089
[21] Li, S. and Lu, Y. 2007. Moments of the Dividend Payments and Related Problems in a Markov-Modulated Risk Model. North American Actuarial Journal, 11(2): 65-76.
[22] Li, S. and Lu, Y. 2008. The Decompositions of the Discounted Penalty Functions and Dividends-Penalty Identity in a Markov-Modulated Risk Model. ASTIN Bulletin, 38(1): 53-71. · Zbl 1169.91390
[23] Lin, X. S. and Willmot, G. E. 1999. Analysis of a Defective Renewal Equation Arising in Ruin Theory. Insurance: Mathematics and Economics, 25(1): 63-84. · Zbl 1028.91556
[24] Neuts, M. F. 1989. Structured Stochastic Matrices of M/G/1 Type and Their Applications, New York: Marcel Dekker.
[25] Ramaswami, V. 2006. Passage Times in Fluid Models with Application to Risk Processes. Methodology and Computing in Applied Probability, 8(4): 497-515. · Zbl 1110.60067
[26] Willmot, G. E. 2007. On the Discounted Penalty Function in the Renewal Risk Model with General Interclaim Times. Insurance: Mathematics and Economics, 41(1): 17-31. · Zbl 1119.91058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.