Karali, Georgia; Sourdis, Christos The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit. (English) Zbl 1316.35240 Arch. Ration. Mech. Anal. 217, No. 2, 439-523 (2015). Summary: We study the ground state which minimizes a Gross-Pitaevskii energy with general non-radial trapping potential, under the unit mass constraint, in the Thomas-Fermi limit where a small parameter \(\varepsilon\) tends to 0. This ground state plays an important role in the mathematical treatment of recent experiments on the phenomenon of Bose-Einstein condensation, and in the study of various types of solutions of nonhomogeneous defocusing nonlinear Schrödinger equations. Many of these applications require delicate estimates for the behavior of the ground state near the boundary of the condensate, as \(\varepsilon\to 0\), in the vicinity of which the ground state has irregular behavior in the form of a steep corner layer. In particular, the role of this layer is important in order to detect the presence of vortices in the small density region of the condensate, to understand the superfluid flow around an obstacle, and it also has a leading order contribution in the energy. In contrast to previous approaches, we utilize a perturbation argument to go beyond the classical Thomas-Fermi approximation and accurately approximate the layer by the Hastings-McLeod solution of the Painlevé-II equation. This settles an open problem (cf. [A. Aftalion, Vortices in Bose-Einstein condensates. Boston, MA: Birkhäuser (2006; Zbl 1129.82004)], pg. 13 or Open Problem 8.1), answered very recently only for the special case of the model harmonic potential [C. Gallo and D. Pelinovsky, Asymptotic Anal. 73, No. 1–2, 53–96 (2011; Zbl 1225.35217)]. In fact, we even improve upon previous results that relied heavily on the radial symmetry of the potential trap. Moreover, we show that the ground state has the maximal regularity available, namely it remains uniformly bounded in the \(\frac{1}{2}\)-Hölder norm, which is the exact Hölder regularity of the singular limit profile, as \(\varepsilon\to 0\). Our study is highly motivated by an interesting open problem posed recently by A. Aftalion et al. [J. Funct. Anal. 260, No. 8, 2387–2406 (2011; Zbl 1220.82006)], and an open question of C. Gallo and D. Pelinovsky [J. Math. Anal. Appl. 355, No. 2, 495–526 (2009; Zbl 1173.82005)], concerning the removal of the radial symmetry assumption from the potential trap. Cited in 12 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 82D50 Statistical mechanics of superfluids 82B10 Quantum equilibrium statistical mechanics (general) Citations:Zbl 1129.82004; Zbl 1225.35217; Zbl 1220.82006; Zbl 1173.82005 PDF BibTeX XML Cite \textit{G. Karali} and \textit{C. Sourdis}, Arch. Ration. Mech. Anal. 217, No. 2, 439--523 (2015; Zbl 1316.35240) Full Text: DOI arXiv OpenURL References: [1] Ablowitz M.J., Prinari B., Trubatch A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004) · Zbl 1057.35058 [2] Achilleos, V., Theocharis, G., Kevrekidis, P.G., Karachalios, N.I., Diakonos, F.K., Frantzeskakis, D.J.: Stationary states of a nonlinear Schrödinger lattice with a harmonic trap. J. Math. Phys. 52, 092701 (2011) · Zbl 1272.35172 [3] Afrouzi, G.A.; Brown, K.J., On a diffusive logistic equation, J. Math. Anal. Appl., 225, 326-339, (1998) · Zbl 0923.35074 [4] Aftalion, A., Rivière, T.: Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A64, 043611 (2001) · Zbl 1282.35022 [5] Aftalion, A., Du, Q.: Vortices in a rotating Bose-Einstein condensate: critical angular velocities and energy diagrams in the Thomas-Fermi regime. Phys. Rev. A64, 063603 (2001) · Zbl 1241.35079 [6] Aftalion, A., Du, Q., Pomeau, Y.: Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose-Einstein condensate. Phys. Rev. Lett. 91, 090407 (2003) · Zbl 0930.35073 [7] Aftalion, A.; Blanc, X., Existence of vortex free solutions in the Painlevé boundary layer of a Bose Einstein condensate, J. Math. Pures Appl., 83, 765-801, (2004) · Zbl 1081.82011 [8] Aftalion, A.; Alama, S.; Bronsard, L., Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate, Arch. Ration. Mech. Anal., 178, 247-286, (2005) · Zbl 1075.76063 [9] Aftalion, A.: Vortices in Bose Einstein Condensates. Birkhäuser Boston, Boston, (2006) · Zbl 1129.82004 [10] Aftalion, A.; Jerrard, R.L.; Royo-Letelier, J., Non-existence of vortices in the small density region of a condensate. J. funct, Anal., 260, 2387-2406, (2011) · Zbl 1220.82006 [11] Alama, S.; Tarantello, G., On the solvability of a semilinear elliptic equation via an associated eigenvalue problem, Math. Z., 221, 467-493, (1996) · Zbl 0853.35039 [12] Alama, S., Bronsard, L.: Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions. J. Math. Phys. 46 095102 (2005) · Zbl 1111.58013 [13] Alama, S.; Bronsard, L.; Montero, J.A., Vortices for a rotating toroidal Bose-Einstein condensate, Arch. Ration. Mech. Anal., 187, 481-522, (2008) · Zbl 1139.82002 [14] Alama, S.; Bronsard, L.; Millot, V., Gamma-convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves, J. Anal. Math., 114, 341-391, (2011) · Zbl 1245.82085 [15] Alessio, F.; Calamai, A.; Montecchiari, P., Saddle-type solutions for a class of semilinear elliptic equations, Adv. Differ. Equ., 12, 361-380, (2007) · Zbl 1193.35058 [16] Alfimov, G.L.; Zezyulin, D.A., Nonlinear modes for the Gross-Pitaevskii equation—a demonstrative computation approach, Nonlinearity, 20, 2075-2092, (2007) · Zbl 1221.35388 [17] Alikakos, N.D.; Fusco, G.; Stefanopoulos, V., Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, J. Differ. Equ., 126, 106-167, (1996) · Zbl 0879.35074 [18] Alikakos, N.D.; Bates, P.W.; Cahn, J.W.; Fife, P.C.; Fusco, G.; Tanoglu, G.B., Analysis of the corner layer problem in anisotropy, Discrete Contin. Dyn. Syst., 6, 237-255, (2006) · Zbl 1235.74011 [19] Ambrosetti A., Prodi G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1995) · Zbl 0818.47059 [20] Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems. Birkhäuser Verlag, Basel, 2006 · Zbl 1115.35004 [21] Ambrosetti A., Malchiodi A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, Cambridge (2007) · Zbl 1125.47052 [22] André, N.; Bauman, P.; Phillips, D., Vortex pinning with bounded fields for the Ginzburg-Landau equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, 705-729, (2003) · Zbl 1040.35108 [23] André, N.; Shafrir, I., Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition, Calc. Var., 7, 1-27, (1998) · Zbl 0931.58006 [24] AndrewsB. Clutterbuck, J., Proof of the fundamental gap conjecture, J. Am. Math. Soc., 24, 899-916, (2011) · Zbl 1222.35130 [25] Baldo, S., Orlandi, G., Jerrard, R., Soner, M.: Vortex density models for superconductivity and superfluidity (2010, preprint) · Zbl 1269.82070 [26] Band, Y.B., Towers, I., Malomed, B.A.: Unified semiclassical approximation for Bose-Einstein condensates: application to a BEC in an optical potential. Phys. Rev. A67, 023602 (2003) · Zbl 1126.35016 [27] Bartsch, T., Wang, Z.-Q., Willem, M.: The Dirichlet problem for superlinear elliptic equations. In: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. II, pp. 1-71. Elsevier, 2005 · Zbl 1197.35264 [28] Bates, P.W.; Jones, C.K.R.T., Invariant manifolds for semilinear partial differential equations, Dyn. Rep., 2, 1-38, (1989) [29] Bao, W.; Du, Q., Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25, 1674-1697, (2004) · Zbl 1061.82025 [30] Bao, W.: Ground states and dynamics of rotating Bose-Einstein condensates. In: Cercignani, C., Gabetta, E. (eds) Transport Phenomena and Kinetic Theory. Birkhaüser, Boston, (2007) · Zbl 1118.82027 [31] Bao, W.: Some questions related to NLS. Slides from a talk (2012). Available online at http://www.acmac.uoc.gr/SMAW2012/talks · Zbl 0262.35034 [32] Bender C.M., Orszag S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (1999) · Zbl 0938.34001 [33] Benoît, E. (Ed.): Dynamic Bifurcations. Lecture Notes in Mathematics, vol. 1493. Springer, Heidelberg, (1991) · Zbl 1216.82023 [34] Berestycki, H., Lions, P.L.: Some Applications of the Method of Sub- and Supersolutions. Lecture Notes in Mathematics, vol. 782, pp. 16-41, (1980) · Zbl 0811.35098 [35] Berestycki, H.; Nirenberg, L.; Varadhan, S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Commun. Pure Appl. Math., 47, 47-92, (1994) · Zbl 0806.35129 [36] Berestycki, H.; Lin, T.C.; Zhao, C.Y., On phase-separation model: asymptotics and qualitative properties, Arch. Ration. Mech. Anal., 208, 163-200, (2013) · Zbl 1263.35095 [37] Berestycki, H.; Terracini, S.; Wang, K.; Wei, J., On entire solutions of an elliptic system modeling phase separations, Adv. Math., 243, 102-126, (2013) · Zbl 1282.35022 [38] Béthuel, F.; Brezis, H.; Hélein, F., Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var., 1, 123-148, (1993) · Zbl 0834.35014 [39] Béthuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Birkhäuser, Boston, (1994) [40] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D., Orbital stability of the black soliton to the Gross-Pitaevskii equation, Indiana Univ. Math. J., 57, 2611-2642, (2008) · Zbl 1171.35012 [41] Boscolo, S.; Turitsyn, S.K.; Novokshenov, V.Yu.; Nijhof, J.H., Self-similar parabolic optical solitary waves, Theor. Math. Phys., 133, 1647-1656, (2002) · Zbl 1138.35407 [42] Brezis H.: Semilinear equations in \({{{\mathbb{R}}^n}}\) without conditions at infinity. Appl. Math. Optim. 12, 271-282 (1984) · Zbl 0562.35035 [43] Brezis, H.; Oswald, L., Remarks on sublinear elliptic equations, Nonlinear Anal., 10, 55-64, (1986) · Zbl 0593.35045 [44] Brunovský, P.; Fiedler, B., Number of zeros on invariant manifolds in reaction-diffusion equations, Nonlinear Anal., 10, 179-193, (1986) · Zbl 0594.35056 [45] Butuzov, V.F.; Nefedov, N.N.; Schneider, K.R., Singularly perturbed boundary value problems for systems of tichonov’s type in case of exchange of stabilities, J. Differ. Equ., 159, 427-446, (1999) · Zbl 0944.34048 [46] Butuzov, V.F.; Nefedov, N.N.; Schneider, K.R., Singularly perturbed elliptic problems in the case of exchange of stabilities, J. Differ. Equ., 169, 373-395, (2001) · Zbl 0974.35039 [47] Byeon, J.; Wang, Z.-Q., Standing waves with a critical frequency for nonlinear Schrödinger equations. arch, Ration. Mech. Anal., 165, 295-316, (2002) · Zbl 1022.35064 [48] Byeon, J.; Oshita, Y., Uniqueness of standing waves for nonlinear Schrödinger equations, Proc. R. Soc. Edinb. Sect. A, 138, 975-987, (2008) · Zbl 1156.35468 [49] Cabré, X.; Capella, A., On the stability of radial solutions of semilinear elliptic equations in all of \({{\mathbb{R}}^n}\), C. R. Acad. Sci. Paris, Ser. I, 338, 769-774, (2004) · Zbl 1081.35029 [50] Cabré, X.; Terra, J., Saddle-shaped solutions of bistable diffusion equations in all of \({{{\mathbb{R}}^{2m}}}\), J. Eur. Math. Soc., 11, 819-843, (2009) · Zbl 1182.35110 [51] Cabré, X.; Terra, J., Qualitative properties of saddle-shaped solutions to bistable diffusion equations, Commun. Partial Differ. Equ., 35, 1923-1957, (2010) · Zbl 1209.35042 [52] Cabré, X., Uniqueness and stability of saddle-shaped solutions to the Allen-Cahn equation. J. math, Pures Appl., 98, 239-256, (2012) · Zbl 1387.35307 [53] Caffarelli, L.A.; Roquejoffre, J.-M., Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal., 183, 457-487, (2007) · Zbl 1189.35084 [54] Caffarelli, L.A.; Lin, F.-H, Singularly perturbed elliptic systems and multivalued harmonic functions with free boundaries, J. Am. Math. Soc., 21, 847-862, (2008) · Zbl 1194.35138 [55] Caginalp, G.; Fife, P.C., Dynamics of layered interfaces arising from phase boundaries, SIAM J. Appl. Math., 48, 506-518, (1988) [56] Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley, Chichester, (2003) · Zbl 1059.92051 [57] Carretero-González, R.; Frantzeskakis, D.J.; Kevrekidis, P.G., Nonlinear waves in Bose-Einstein condensates: physical relevance and mathematical techniques, Nonlinearity, 21, 139-202, (2008) · Zbl 1216.82023 [58] Chapman, S.J., Superheating field of type II superconductors, SIAM J. Appl. Math., 55, 1233-1258, (1995) · Zbl 0839.35129 [59] Chen, X., Spectrums for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interface, Commun. Partial Differ. Equ., 19, 1371-1395, (1994) · Zbl 0811.35098 [60] Chen, X.; Sadhu, S., Uniform asymptotic expansions of solutions of an inhomogeneous equation, J. Differ. Equ., 253, 951-976, (2012) · Zbl 1365.34097 [61] Chow S.N., Hale J.K.: Methods of Bifurcation Theory. Springer, Berlin (1996) · Zbl 0487.47039 [62] Coles, M.P.; Pelinovsky, D.E.; Kevrekidis, P.G., Excited states in the Thomas-Fermi limit: a variational approach, Nonlinearity, 23, 1753-1770, (2010) · Zbl 1197.35264 [63] Conti, M.; Terracini, S.; Verzini, G., Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195, 524-560, (2005) · Zbl 1126.35016 [64] Coppel, W.A.: Stability and Asymptotic Behaviour of Differential Equations. Heath and Co, Boston, 1965 · Zbl 0154.09301 [65] Correggi M., Rougerie N., Yngvason J.: The transition to a giant vortex phase in a fast rotating Bose-Einstein condensate. Commun. Math. Phys. 303, 451-308 (2011) · Zbl 1217.82074 [66] Dafermos, C.M., Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, Arch. Ration. Mech. Anal., 52, 1-9, (1973) · Zbl 0262.35034 [67] Dalfovo, F., Pitaevskii, L.,Stringari, S.: Order parameter at the boundary of a trapped Bose gas. Phys. Rev. A54, 4213 (1996) · Zbl 1245.82085 [68] Dalfovo, F., Pitaevskii, L., Stringari, S.: The condensate wave function of a trapped atomic gas. J. Res. Natl. Inst. Stand. Technol. 101, 537 (1996) · Zbl 1193.35058 [69] Dancer, E.N.; Du, Y., Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differ. Equ., 114, 434-475, (1994) · Zbl 0815.35024 [70] Dancer, E.N.; Yan, S., Construction of various types of solutions for an elliptic problem, Calc. Var., 20, 93-118, (2004) · Zbl 1154.35348 [71] Dancer, E.N.; Yan, S., On the superlinear lazer-mckenna conjecture. J. differ, Equ., 210, 317-351, (2005) · Zbl 1190.35082 [72] Dancer, E.N.: Stable and not too unstable solutions on \({\mathbb{R}^n}\) for small diffusion. In: Nonlinear Dynamics and Evolution Equations, Fields Institute Communications, vol. 48, pp. 67-93. American Mathematical Society, Providence, 2006 · Zbl 1259.35104 [73] Dancer, E.N.; Yan, S., On the lazer-mckenna conjecture involving critical and supercritical exponents, Methods Appl. Anal., 15, 97-119, (2008) · Zbl 1179.35139 [74] Dang, H.; Fife, P.C.; Peletier, L.A., Saddle solutions of the bistable diffusion equation, Z. Angew. Math. Phys., 43, 984-998, (1992) · Zbl 0764.35048 [75] Daniels, P.G.; Lee, A.T., On the boundary-layer structure of patterns of convection in rectangular-planform containers, J. Fluid Mech., 393, 357-380, (1999) · Zbl 0971.76027 [76] De Boer, P.C.T.; Ludford, G.S.S., Spherical electric probe in a continuum gas, Plasma Phys., 17, 29-43, (1975) [77] del Pino, M., Layers with nonsmooth interface in a semilinear elliptic problem, Commun. Partial Differ. Equ., 17, 1695-1708, (1992) · Zbl 0786.35057 [78] del Pino, M.; Kowalczyk, M.; Wei, J., Concentration on curves for nonlinear Schrödinger equations, Commun. Pure Appl. Math., 60, 113-146, (2007) · Zbl 1123.35003 [79] del Pino, M.; Kowalczyk, M.; Wei, J., The Toda system and clustering interface in the Allen-Cahn equation, Arch. Ration. Mech. Anal., 190, 141-187, (2008) · Zbl 1163.35017 [80] del Pino, M.; KowalczykM. Pacard, F.; Wei, J., The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224, 1462-1516, (2010) · Zbl 1197.35114 [81] del Pino, M.; Kowalczyk, M.; Wei, J., On De Giorgi conjecture in dimensions \({{N ≧ 9}}\), Ann. Math., 174, 1485-1569, (2011) · Zbl 1238.35019 [82] delPino, M.; Musso, M.; Pacard, F., Solutions of the Allen-Cahn equation invariant under screw-motion, Manuscr. Math., 138, 273-286, (2012) · Zbl 1246.35093 [83] Du, Q., Diverse vortex dynamics in superfluids, Contemp. Math., 329, 105-117, (2003) · Zbl 1040.76005 [84] Du, Y.; Ma, L., Logistic type equations on \({{{\mathbb{R}}^n}}\) by a squeezing method involving boundary blow-up solutions, J. Lond. Math. Soc., 64, 107-124, (2001) · Zbl 1018.35045 [85] Du, Y., The heterogeneous Allen-Cahn equation in a ball: solutions with layers and spikes, J. Differ. Equ., 244, 117-169, (2008) · Zbl 1144.35017 [86] Du, Z.; Gui, C., Interior layers for an inhomogeneous Allen-Cahn equation, J. Differ. Equ., 249, 215-239, (2010) · Zbl 1194.35192 [87] Farina, A., Sciunzi, B., Valdinoci, E.: Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. VII, 741-791 (2008) · Zbl 1180.35251 [88] Felmer, P.; Martinez, S., High-energy solutions for a phase transition problem, J. Differ. Equ., 194, 198-220, (2003) · Zbl 1054.34030 [89] Felmer, P.; Martínez, S.; Tanaka, K., Multi-clustered high-energy solutions for a phase transition problem, Proc. R. Soc. Edinb. Sect. A, 135, 731-765, (2005) · Zbl 1148.34319 [90] Felmer, P.; Mayorga-Zambrano, J., Multiplicity and concentration for the nonlinear Schrödinger equation with critical frequency, Nonlinear Anal., 66, 151-169, (2007) · Zbl 1124.35083 [91] Felmer, P.; Martínez, S.; Tanaka, K., Uniqueness of radially symmetric positive solutions for \({{-Δ u+u = u^p}}\) in an annulus. J. differ, Equ., 245, 1198-1209, (2008) · Zbl 1159.34016 [92] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31, 53-98, (1979) · Zbl 0476.34034 [93] Fermi, E., Statistical method of investigating electrons in atoms, Z. Phys., 48, 73-79, (1928) · JFM 54.0984.02 [94] Fetter, A.L.; Feder, D.L., Beyond the Thomas-Fermi approximation for a trapped condensed Bose-Einstein gas, Phys. Rev. A, 58, 3185-3194, (1998) [95] Fife, P.C.: Semilinear elliptic boundary value problems with small parameters. Arch. Ration. Mech. Anal. 52, 205-232 (1973) · Zbl 0268.35007 [96] Fife, P.C., Greenlee, M.W.: Interior transition layers of elliptic boundary value problems with a small parameter. Russ. Math. Surv. 29, 103-131 (1974) · Zbl 0309.35035 [97] Fife, P.C.: A phase plane analysis of a corner layer problem arising in the study of crystalline grain boundaries (2004). Unpublished preprint, available online at http://www.math.utah.edu/ fife [98] Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397-408 (1986) · Zbl 0613.35076 [99] Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé Transcendents, The Riemann-Hilbert Approach. American Mathematical Society, Providence, 2006 · Zbl 1111.34001 [100] Frantzeskakis, D.J., Theocharis, G., Diakonos, F.K., Schmelcher, P., Kivshar, Y.S.: Interaction of dark solitons with localized impurities in Bose-Einstein condensates. Phys. Rev. A66, 053608 (2002) · Zbl 1138.35407 [101] Fusco, G., Pignotti, C.: Estimates for fundamental solutions and spectral bounds for a class of Schrödinger operators. J. Differ. Equ. 244, 514-554 (2008) · Zbl 1142.34057 [102] Fusco, G. Leonetti, F. Pignotti, C.: A uniform estimate for positive solutions of semilinear elliptic equations. Trans. Am. Math. Soc. 363, 4285-4307 (2011) · Zbl 1219.35104 [103] Gallo, C., Pelinovsky, D.: Eigenvalues of a nonlinear ground state in the Thomas-Fermi approximation. J. Math. Anal. Appl. 355, 495-526 (2009). See also the corresponding presentation available online at http://lmv.math.cnrs.fr/conferences-et-colloques/maths-physics-meeting/article/title-and-summary-of-talks · Zbl 1173.82005 [104] Gallo, C., Pelinovsky, D.: On the Thomas-Fermi ground state in a harmonic potential. Asymptot. Anal. 73, 53-96 (2011) · Zbl 1225.35217 [105] Gallo, C.: Expansion of the energy of the ground state of the Gross-Pitaevskii equation in the Thomas-Fermi limit. J. Math. Phys. 54, 031507 (2013) · Zbl 1281.81068 [106] Gesztesy, F., Jones, C.K.R.T., Latushkin, Y.,Stanislavova, M.: A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations. Indiana Univ. Math. J. 49, 221-243 (2000) · Zbl 0969.35123 [107] Ghoussoub, N., Gui, C.: On a conjecture of De Giorgi and some related problems. Math. Ann. 311, 481-491 (1998) · Zbl 0918.35046 [108] Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 (1979) · Zbl 0425.35020 [109] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York, 1983 · Zbl 0562.35001 [110] Grillakis, M.; Shatah, J.; Strauss, W.A., Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74, 160-197, (1987) · Zbl 0656.35122 [111] Grillakis, M.: Existence of nodal solutions of semilinear equations in \({\mathbb{R}^n}\). J. Differ. Equ. 85, 367-400 (1990) · Zbl 0706.35046 [112] Guedda, M.: Note on the uniqueness of a global positive solution to the second Painlevé equation. Electron. J. Differ. Equ. 2001, 1-4 (2001) · Zbl 0983.34082 [113] Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31-51 (1980) · Zbl 0426.34019 [114] Hastings, S.P., Troy, W.C.: On some conjectures of Turcotte, Spence, Bau, and Holmes. SIAM J. Math. Anal. 20, 634-642 (1989) · Zbl 0704.34027 [115] Hastings, S.P., McLeod, J.B.: Periodic solutions of a forced second-order differential equation. J. Nonlinear Sci. 1, 225-245 (1991) · Zbl 0801.34040 [116] Hastings, S.P., McLeod, J.B.: Classical Methods in Ordinary Differential Equations. American Mathematical Society, Providence, 2012 · Zbl 1239.34001 [117] Helffer, B., Weissler, F.B.: On a family of solutions of the second Painlevé equation related to superconductivity. Eur. J. Appl. Math. 9, 223-243 (1998) · Zbl 0920.34051 [118] Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Heidelberg, 1981 · Zbl 0456.35001 [119] Herring, G., Carr, L.D., Carretero-González, R., Kevrekidis, P.G., Frantzeskakis, D.J.: Radially symmetric nonlinear states of harmonically trapped Bose-Einstein condensates. Phys. Rev. A77, 023625 (2008) [120] Hervé, R.M., Hervé, M.: Etude qualitative des solutions réelles de l’équation différentielle \({{r^2f''(r)+rf'(r)-q^2f(r)+r^2f(r)\left(1-f(r)^2\right)=0}}\). Ann. Inst. H. Poincaré Anal. Non Linéaire11, 427-440 (1994) [121] Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory with Applications to Schrödinger Operators. Springer, New York, 1996 · Zbl 0855.47002 [122] Holmes, P., Spence, D.: On a Painlevé-type boundary-value problem. Q. J. Mech. App. Math. 37, 525-538 (1984) · Zbl 0552.34023 [123] Hutson, V., Lou, Y., Mischaikow, K.: Spatial heterogeneity of resources versus Lotka-Volterra dynamics. J. Differ. Equ. 185, 97-136 (2002) · Zbl 1023.35047 [124] Ichihara, R., Danshita, I., Nikuni, T.: Matter-wave dark solitons in a double-well potential. Phys. Rev. A78, 063604 (2008) [125] Ignat, R., Millot, V.: The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate. J. Funct. Anal. 233, 260-306 (2006) · Zbl 1106.58009 [126] Ignat, R., Millot, V.: Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate. Rev. Math. Phys. 18, 119-162 (2006) · Zbl 1105.82030 [127] Iida, M., Nakashima, K., Yanagida, E.: On certain one-dimensionar elliptic systems under different growth conditions at respective infinities. In: Asymptotic Analysis and Singularities. Advanced Studies in Pure Mathematics, vol. 47-2, pp. 565-572, 2007 · Zbl 1141.35319 [128] Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory. Springer, New York, 1980 · Zbl 0443.34001 [129] Its, A.R., Novokshenov, V.Y.: The Isomonodromic Deformation Method in the Theory of the Painlevé Equations. Lecture Notes in Mathematics, vol. 1191, Springer, Heidelberg, 1986 · Zbl 0592.34001 [130] Jerrard, R.L.: Local minimizers with vortex filaments for a Gross-Pitaevsky functional. ESAIM Control Optim. Calc. Var. 13, 35-71 (2007) · Zbl 1111.35077 [131] Jones, C.K.R.T.: Geometric Singular Perturbation Theory. Lecture Notes in Mathematics, vol. 1609, pp. 44-118 (1995) · Zbl 0840.58040 [132] Kabeya, Y., Tanaka, K.: Uniqueness of positive radial solutions of semilinear elliptic equations in \({\mathbb{R}^n}\) and Sérés non-degeneracy condition. Commun. Partial Differ. Equ. 24, 563-598 (1999) · Zbl 0930.35064 [133] Karali, G., Kevrekidis, P., Efremidis, N.: Nonlinear from linear states in two-component Bose-Einstein condensates. J. Phys. A42, 045206 (2009) · Zbl 1210.82041 [134] Karali, G., Sourdis, C.: Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities. Ann. Inst. H. Poincaré Anal. Non Linéaire29, 131-170 (2012) · Zbl 1242.35114 [135] Karali, G., Sourdis, C.: Resonance phenomena in a singular perturbation problem in the case of exchange of stabilities. Commun. Partial Differ. Equ. 37, 1620-1667 (2012) · Zbl 1402.35122 [136] Kenig, C.; Ni, W.M., An exterior Dirichlet problem with application to some non-linear equations arising in geometry, J. Am. Math. Soc., 106, 689-702, (1984) · Zbl 0559.35025 [137] Kevrekidis, P.G., Pelinovsky, D.E.: Distribution of eigenfrequencies for oscillations of the ground state in the Thomas-Fermi limit. Phys. Rev. A81, 023627 (2010) [138] Kevrekidis, P.G., Pelinovsky, D.E.: Variational approximations of trapped vortices in the large-density limit. Nonlinearity24, 1271-1289 (2011) · Zbl 1216.35145 [139] Kirr, E., Kevrekidis, P.G., Pelinovsky, D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Commun. Math. Phys. 308, 795-844 (2011) · Zbl 1235.34128 [140] Klingenberg, W.: Riemannian Geometry. Walter de Gruyter and Co, Berlin, 1982 · Zbl 0495.53036 [141] Kohn, R.V., Sternberg, P.: Local minimizers and singular perturbations. Proc. R. Soc. Edinb. Sect. A111, 69-84 (1989) · Zbl 0676.49011 [142] Kollár, R., Pego, R.L.: Spectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans Function and Krein Signature. Appl. Math. Res. Express2012, 1-46 (2012) · Zbl 1254.82004 [143] Konotop, V.V., Kevrekidis, P.G.: Bohr-Sommerfeld quantization condition for the Gross-Pitaevskii equation. Phys. Rev. Lett. 91, 230402 (2003) · Zbl 1218.35181 [144] Kowalczyk, M.; Liu, Y., Nondegeneracy of the saddle solution of the Allen-Cahn equation, Proc. Am. Math. Soc., 139, 4319-4329, (2011) · Zbl 1241.35079 [145] Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to non- hyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286-314 (2001) · Zbl 1002.34046 [146] Kurth, M.: On the existence of infinitely many modes of a nonlocal nonlinear Schrödinger equation related to dispersion-managed solitons. SIAM J. Math. Anal. 36, 967-985 (2004) · Zbl 1082.35141 [147] Kurata, K., Matsuzawa, H.: Multiple stable patterns in a balanced bistable equation with heterogeneous environments. Appl. Anal. 89, 1023-1035 (2010) · Zbl 1193.35047 [148] Lassoued, L.; Mironescu, P., Ginzburg-Landau type energy with discontinuous constraint, J. Anal. Math., 77, 1-26, (1999) · Zbl 0930.35073 [149] Levi, D., Winternitz, P. (eds.): Painlevé Transcendents: Their Asymptotics and Physical Applications. NATO ASI Series, Series B: Physics, vol. 278, 1990 · Zbl 1040.76005 [150] Li, G., Yang, J., Yan, S.: Solutions with boundary layer and positive peak for an elliptic Dirichlet problem. Proc. R. Soc. Edinb. Sect. A134, 515-536 (2004) · Zbl 1136.35367 [151] Li, F., Nakashima, K.: Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete Contin. Dyn. Syst. 32, 1391-1420 (2012) · Zbl 1250.35085 [152] Lieb, E.H., Seiringer, R., Yngvason, J.: A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224, 17-31 (2001) · Zbl 0996.82010 [153] Lieb, E.H., Seiringer, R., Solovej, J.-P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Book (2006). Avalable online at http://arxiv.org/abs/cond-mat/0610117v1 · Zbl 1104.82012 [154] Lin, F.H., Lin, T.C.: Vortices in two-dimensional Bose-Einstein condensates. In: Geometry and Nonlinear Partial Differential Equations (Hangzhou, 2001), AMS/IP Studies in Advanced Mathematics, vol. 29, 87-114. American Mathematical Society, Providence, 2002 · Zbl 1009.35081 [155] Liu, Z.: The spatial behavior of rotating two-component Bose-Einstein condensates. J. Funct. Anal. 261, 1711-1751 (2011) · Zbl 1222.35188 [156] Lundh, E., Pethick, C., Smith, H.: Zero-temperature properties of a trapped Bose-condensed gas: beyond the Thomas-Fermi approximation. Phys. Rev. A55, 2126-2131 (1997) [157] MacKerrella, S.O., Blennerhassettb, P.J., Bassomc, A.P.: Görtler vortices in the Rayleigh layer on an impulsively started cylinder. Phys. Fluids14, 2948-2956 (2002) [158] Madison, K., Chevy, F., Dalibard, J., Wohlleben, W.: Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000) · Zbl 0594.35056 [159] Madison, K., Chevy, F., Dalibard, J., Wohlleben, W.: Vortices in a stirred Bose-Einstein condensate. J. Mod. Opt. 47, 2715-2723 (2000) · Zbl 1022.35064 [160] Mahmoudi, F., Malchiodi, A., Wei, J.: Transition layer for the heterogeneous Allen-Cahn equation. Ann. Inst. H. Poincaré Anal. Non Linéaire25, 609-631 (2008) · Zbl 1148.35030 [161] Margetis, D.: Asymptotic formula for the condensate wave function of a trapped Bose gas. Phys. Rev. A61, 055601 (2000) · Zbl 1194.81097 [162] Margetis, D.: Bose-Einstein condensation beyond mean field: many-body bound state of periodic microstructure. SIAM Multiscale Model. Simul. 10, 383-417 (2012) · Zbl 1253.81167 [163] Montero, A.: Hodge decomposition with degenerate weights and the Gross-Pitaevskii energy. J. Funct. Anal. 254, 1926-1973 (2008) · Zbl 1149.35028 [164] Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zürich Lectures in Advanced Mathematics. European Mathematical Society, Zürich, 2011 · Zbl 1235.37002 [165] Nakashima, K., Ni, W.-M., Su, L.: An indefinite nonlinear diffusion problem in population genetics, I: existence and limiting profiles. Discrete Contin. Dyn. Syst. 27, 617-641 (2010) · Zbl 1192.35014 [166] Nefedov, N.N., Sakamoto, K.: Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity. Hiroshima Math. J. 33, 391-432 (2003) · Zbl 1065.35039 [167] Noris, B., Terracini, S., Tavares, H., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267-302 (2010) · Zbl 1189.35314 [168] Ni, W.M.: On the elliptic eqation \({{Δ U + KU^{(n+2)/(n-2)} = 0}}\), its generalization and application in geometry. Indiana Univ. Math. J. 4, 493-529 (1982) · Zbl 0496.35036 [169] Oh, Y.-G.: Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials. J. Differ. Equ. 81, 255-274 (1989) · Zbl 0944.34048 [170] Ovchinnikov, Y.M., Sigal, I.M.: Ginzburg-Landau equation I. Static vortices. In: Partial Differential Equations and Their Applications. CRM Proceedings and Lecture Notes, vol. 12, pp. 199-220. American Mathematical Society, Providence, 1997 · Zbl 0912.35078 [171] Pacard, F., Rivière, T.: Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model. Birkhaüser, Boston, 2000 · Zbl 1387.35307 [172] Palamides, P.K., Galanis, G.N.: Positive, unbounded and monotone solutions of the singular second Painlevé equation on the half-line. Nonlinear Anal. 57, 401-419 (2004) · Zbl 1053.34028 [173] Pelinovsky, D.E., Kevrekidis, P.G.: Periodic oscillations of dark solitons in parabolic potentials. Contemp. Math. 473, 159-180 (2008) · Zbl 1166.35375 [174] Pelinovsky, D., Asymptotic properties of excited states in the Thomas-Fermi limit, Nonlinear Anal., 73, 2631-2643, (2010) · Zbl 1194.81097 [175] Pelinovsky, D.E., Kevrekidis, P.G.: Bifurcations of asymmetric vortices in symmetric harmonic traps. Appl. Math. Res. Express2013, 127-164 (2013) · Zbl 1270.35069 [176] Pethick, C., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge, 2002 · Zbl 0839.35129 [177] Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford, 2003 · Zbl 1110.82002 [178] Rabinowitz, P.H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291, (1992) · Zbl 0763.35087 [179] Rebaï, Y.: Weak solutions of nonlinear elliptic equations with prescribed singular set. J. Differ. Equ. 127, 439-453 (1996) · Zbl 1365.34097 [180] Rougerie, N.: Vortex rings in fast rotating Bose-Einstein condensates. Arch. Ration. Mech. Anal. 203, 69-135 (2012) · Zbl 1256.35169 [181] Ryu, C., et al.: Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260-401 (2007) · Zbl 0262.35034 [182] Salman, H.: Approximating steady states in equilibrium and nonequilibrium condensates. Phys. Rev. A85, 063622 (2012) · Zbl 1197.35264 [183] Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model. Birkhäuser, Boston, 2006 · Zbl 1112.35002 [184] Sattinger, D.H.: Topics in Stability and Bifurcation Theory. Lecture Notes in Mathematics, vol. 309. Springer, Heidelberg, 1973 · Zbl 0248.35003 [185] Seiringer, R.: Gross-Pitaevskii theory of the rotating Bose gas. Commun. Math. Phys. 229, 491-509 (2002) · Zbl 1004.82003 [186] Seiringer, R.: Dillute, trapped Bose gases and Bose-Einstein condensation. Lect. Notes Phys. 695, 249-274 (2006) · Zbl 1103.82028 [187] Selem, F.H.: Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential. Nonlinearity24, 1795-1819 (2011) · Zbl 1221.35402 [188] Serfaty, S., On a model of rotating superfluids, ESAIM Control Optim. Calc. Var., 6, 201-238, (2001) · Zbl 0964.35142 [189] Schecter, S.: Existence of Dafermos profiles for singular shocks. J. Differ. Equ. 205, 185-210 (2004) · Zbl 1077.35095 [190] Schecter, S., Sourdis, C.: Heteroclinic orbits in slow-fast Hamiltonian systems with slow manifold bifurcations. J. Dyn. Differ. Equ. 22, 629-655 (2010) · Zbl 1213.34072 [191] Sourdis, C., Fife, P.C.: Existence of heteroclinic orbits for a corner layer problem in anisotropic interfaces. Adv. Differ. Equ. 12, 623-668 (2007) · Zbl 1157.34047 [192] Stock, S., Bretin, V., Chevy, F., Dalibard, J.: Shape oscillation of a rotating Bose-Einstein condensate. Europhys. Lett. 65, 594 (2004) · Zbl 0811.35098 [193] Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Springer, New York, 1999 · Zbl 0928.35157 [194] Sun, J.: An equation for the limit state of a superconductor with pinning sites. Electron. J. Differ. Equ. 2005, 1-24 (2005) · Zbl 1134.35395 [195] Thomas, L.H., The calculation of atomic fields, Proc. Camb. Philos. Soc., 23, 542, (1927) · JFM 53.0868.04 [196] Tsai, T.-P., Yau, H.-T.: Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions. Commun. Pure Appl. Math. 55, 153-216 (2002) · Zbl 1031.35137 [197] Turcotte, D.L., Spence, D.A., Bau, H.H.: Multiple solutions for natural convective flows in an internally heated, vertical channel with viscous dissipation and pressure work. Int. J. Heat Mass Transf. 25, 699-706 (1982) · Zbl 0484.76089 [198] Van Dyke, M.: Perturbation Methods in Fluid Mechanics. Academic Press, New York, 1964 · Zbl 0136.45001 [199] Wei, J., Weth, T.: Asymptotic behavior of solutions of planar elliptic systems with strong competition. Nonlinearity21, 305-317 (2008) · Zbl 1132.35482 [200] Wei, J., Yang, J.: Solutions with transition layer and spike in an inhomogeneous phase transition model. J. Differ. Equ. 246, 3642-3667 (2009) · Zbl 1172.35015 [201] Wei, J., Yang, J.: Toda system and cluster phase transition layers in an inhomogeneous phase transition model. Asymptot. Anal. 69, 175-218 (2010) · Zbl 1216.35055 [202] Wei, J., Lin, T.C., Yang, J.: Vortex rings for the Gross-Pitaevskii equation in \({{{\mathbb{R}}^3}}\). J. Math. Pures Appl. 100, 69-112 (2013) · Zbl 1285.35110 [203] Wei, J., Yang, J.: Vortex rings pinning for the Gross-Pitaevskii equation in three dimensional space. SIAM J. Math. Anal. 44, 3991-4047 (2012) · Zbl 1282.35030 [204] Weiler, C.N., et al.: Spontaneous vortices in the formation of Bose-Einstein condensates. Nature455, 948 (2008) · Zbl 1179.35139 [205] Wu, T.T.: Bose-Einstein condensation in an external potential at zero temperature: general theory. Phys. Rev. A58, 1465-1474 (1998) · Zbl 1040.35108 [206] Yan, D., Kevrekidis, P.G., Frantzeskakis, D.J.: Dark solitons in a Gross-Pitaevskii equation with a power-law nonlinearity: application to ultracold Fermi gases near the Bose-Einstein condensation regime. J. Phys. A44, 415202 (2011) · Zbl 1242.82049 [207] Yin, H., Zhang, P.: Bound states of nonlinear Schrödinger equations with potentials tending to zero at infinity. J. Differ. Equ. 247, 618-647 (2009) · Zbl 1178.35353 [208] Zhang, J., Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. angew, Math. Phys., 51, 498-503, (2000) · Zbl 0985.35085 [209] Zhou, L.; Xu, H.; Liu, Z., Asymptotic behavior of critical points for a Gross-Pitaevskii energy., Nonlinear Anal., 74, 4274-4291, (2011) · Zbl 1218.35181 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.