×

Modelling of quasi-brittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding. (English) Zbl 1147.74041

Summary: The paper provides development of the model of anisotropic damage by microcracking proposed by R. Bargellini et al. [Arch. Mech. 58, No. 2, 93–123 (2006; Zbl 1106.74007)]. This model is based on a discrete approach, which introduces a finite set of microcrack densities associated with fixed directions. This approach avoids inconveniences encountered when using a single second-order tensor damage variable (non-uniqueness of the free energy) and strain decomposition into positive and negative parts (spurious dissipation at crack closure). Frictional sliding on closed microcracks is introduced as an additional dissipative mechanism; it is represented by a second-order sliding variable in each damage direction. Corresponding sliding criteria and non-associated sliding evolution laws, formulated in the strain space for the model coherence, permit to account for hysteretic phenomena. Unilateral effect is taken into account; Young’s and shear moduli are correctly restored at microcrack closure. The crucial requirements of continuity of energy and of stress-strain response are ensured through relevant conditions on parameters and sliding variables values at opening-closure. The discrete approach, associated with some hypotheses concerning damage evolution, permits to couple damage and dissipative sliding. The pertinence of the proposed theory is illustrated by simulating first elastic properties at constant damage, then by considering a specific loading path involving both damage and friction evolutions.

MSC:

74R05 Brittle damage
74E10 Anisotropy in solid mechanics

Citations:

Zbl 1106.74007
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andrieux, S.; Bamberger, Y.; Marigo, J. J., Un modèle de matériau microfissuré pour les bétons et les roches, J. Méca. Théor. Appl., 5, 3, 471-513 (1986) · Zbl 0595.73111
[2] Bargellini, R., 2006. Contribution d’une approche discrète à la modélisation de l’endommagement de matériaux microfissurés. PhD thesis, Univ. de Poitiers; Bargellini, R., 2006. Contribution d’une approche discrète à la modélisation de l’endommagement de matériaux microfissurés. PhD thesis, Univ. de Poitiers
[3] Bargellini, R.; Halm, D.; Dragon, A., Modelling of anisotropic damage by microcracks: towards a discrète approach, Arch. Mech., 58, 2, 93-123 (2006) · Zbl 1106.74007
[4] Boehler, J. P., Lois de comportement anisotrope des milieux continus, J. Méca., 17, 153-190 (1978) · Zbl 0401.73005
[5] Carol, I.; Willam, K., Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage, Int. J. Solids Structures, 33, 20-22, 2939-2957 (1996) · Zbl 0910.73049
[6] Chaboche, J. L., Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition, Int. J. Damage Mech., 1, 149-171 (1992)
[7] Chaboche, J. L.; Lesne, P. M.; Maire, J. F., Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites, Int. J. Damage Mech., 4, 5-22 (1995)
[8] Challamel, N.; Halm, D.; Dragon, A., On the non-conservativeness of a class of anisotropic damage models with unilateral effects, C. R. Mécanique, 334, 7, 414-418 (2006) · Zbl 1177.74054
[9] Cormery, F.; Welemane, H., A critical review of some damage models with unilateral effect, Mech. Res. Commun., 29, 391-395 (2002) · Zbl 1094.74539
[10] Curnier, A., A theory of friction, Int. J. Solids Structures, 20, 7, 637-647 (1984) · Zbl 0543.73138
[11] Curnier, A.; He, Q.; Zysset, P., Conewise linear elastic materials, J. Elasticity, 37, 1-38 (1995) · Zbl 0828.73016
[12] Deflandre J.P., Vincke O., Rebut E., 1995. Contribution of the acoustic emission analysis to the interpretation of the uniaxial compressive test. In: Daemen, Schultz (Eds.), Proc. 35th U.S. Symposium on Rock Mechanics, pp. 867-872; Deflandre J.P., Vincke O., Rebut E., 1995. Contribution of the acoustic emission analysis to the interpretation of the uniaxial compressive test. In: Daemen, Schultz (Eds.), Proc. 35th U.S. Symposium on Rock Mechanics, pp. 867-872
[13] Dragon, A.; Halm, D., Damage Mechanics, some Modelling Challenges, AMAS Lecture Notes, vol. 9 (2004), AMAS: AMAS Warsaw
[14] Fanella, D.; Krajcinovic, D., A micromechanical model for concrete in compression, Eng. Fracture Mech., 29, 1, 49-66 (1988)
[15] Gambarotta, L.; Lagomarsino, S., A microcrack damage model for brittle materials, Int. J. Solids Structures, 30, 2, 177-198 (1993) · Zbl 0775.73196
[16] Halm, D.; Dragon, A., A model of anisotropic damage by mesocrack growth; unilateral effect, Int. J. Damage Mech., 5, 384-402 (1996)
[17] Halm, D.; Dragon, A., An anisotropic model of damage and frictional sliding for brittle materials, Eur. J. Mech. A/Solids, 16, 3, 439-460 (1998) · Zbl 0933.74055
[18] Halphen, B.; Nguyen, Q. S., Sur les matériaux standards généralisés, J. Méca., 14, 1, 39-63 (1975) · Zbl 0308.73017
[19] Hayes, M., Connexions between the moduli for anisotropic elastic materials, J. Elasticity, 2, 2, 135-141 (1972)
[20] Horii, H.; Nemat-Nasser, S., Overall moduli of solids with microcracks: load induced anisotropy, J. Mech. Phys. Solids, 31, 2, 151-171 (1983) · Zbl 0506.73097
[21] Horii, H.; Nemat-Nasser, S., Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res., 90, B4, 3105-3125 (1985)
[22] Ju, J. W., On two-dimensional self-consistent micromechanical damage models for brittle solids, Int. J. Solids Structures, 27, 2, 227-258 (1991)
[23] Kachanov, M., A microcrack damage model for rock inelasticity-Part I: frictional sliding on microcracks; Part II: propagation of microcracks, Mech. Mater., 1, 19-41 (1982)
[24] Kachanov, M., Elastic solids with many cracks and related problems, (Hutchinson, J.; Wu, T., Adv. Appl. Mech., vol. 30 (1994), Academic Press: Academic Press New York), 259-445 · Zbl 0803.73057
[25] Krajcinovic, D., Damage mechanics, Mech. Mater., 8, 117-197 (1989)
[26] Ladevèze, P., Lemaitre, J., 1984. Damage effective stress in quasi-unilateral material conditions. In: Proc. IUTAM Congress Lyngby, Danemark; Ladevèze, P., Lemaitre, J., 1984. Damage effective stress in quasi-unilateral material conditions. In: Proc. IUTAM Congress Lyngby, Danemark
[27] Ladevèze, P.; Gasser, A.; Allix, O., Damage mechanics modeling for ceramic composites, J. Eng. Mater. Tech., 116, 331-336 (1994)
[28] Leguillon, D.; Sanchez-Palencia, E., On the behavior of a cracked elastic body with (or without) friction, J. Méca. Théor. Appl., 1, 2, 195-209 (1982) · Zbl 0525.73113
[29] Michalowski, R.; Mroz, Z., Associated and non-associated sliding rules in contact friction problems, Arch. Mech., 30, 3, 259-276 (1978) · Zbl 0397.73088
[30] Murakami, S.; Kamiya, K., Constitutive and damage evolution equations of elastic brittle materials based on irreversible thermodynamics, Int. J. Mech. Sci., 39, 4, 473-486 (1996) · Zbl 0893.73045
[31] Ortiz, M., A constitutive theory for the inelastic behavior of concrete, Mech. Mater., 4, 67-93 (1985)
[32] Pecqueur, G., 1995. Etude expérimentale et modélisation du comportement d’une craie et d’un grès en torsion. PhD thesis, Univ. de Lille I; Pecqueur, G., 1995. Etude expérimentale et modélisation du comportement d’une craie et d’un grès en torsion. PhD thesis, Univ. de Lille I
[33] Pensée, V., 2002. Contribution de la micromécanique à la modélisation tridimensionnelle de l’endommagement par mésofissuration. PhD thesis, Univ. de Lille I; Pensée, V., 2002. Contribution de la micromécanique à la modélisation tridimensionnelle de l’endommagement par mésofissuration. PhD thesis, Univ. de Lille I
[34] Pensée, V.; Kondo, D., Micromechanics of anisotropic brittle damage: comparative analysis between a stress based and a strain based formulation, Mech. Mater., 35, 8, 747-761 (2002)
[35] Petit, J. P.; Barquins, M., Can natural faults propagate under Mode II conditions?, Tectonics, 7, 6, 1243-1256 (1988)
[36] Seweryn, A., Kulchytsky-Zhyhailo, R.D., Mroz, Z., 2005. Damage growth affected by frictional slip and dilatancy at crack interfaces. In: Proc. ICF XI Congress Turin, Italy; Seweryn, A., Kulchytsky-Zhyhailo, R.D., Mroz, Z., 2005. Damage growth affected by frictional slip and dilatancy at crack interfaces. In: Proc. ICF XI Congress Turin, Italy
[37] Welemane, H.; Cormery, F., Some remarks on the damage unilateral effect modelling for microcracked materials, Int. J. Damage Mech., 11, 65-86 (2002) · Zbl 1094.74539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.