×

Unfolded Seiberg-Witten Floer spectra. II: Relative invariants and the gluing theorem. (English) Zbl 1540.57028

The authors extend relative Bauer-Furuta invariants [S. Bauer and M. Furuta, Invent. Math. 155, No. 1, 1–19 (2004; Zbl 1050.57024)] to general 4-manifolds with boundary using the construction of unfolded Seiberg-Witten-Floer spectra for general 3-manifolds contained in their earlier paper [T. Khandhawit et al., Geom. Topol. 22, No. 4, 2027–2114 (2018; Zbl 1395.57040)]. Their main result is a gluing theorem for the relative Bauer-Furuta invariants, which generalizes Manolescu’s construction [C. Manolescu, J. Differ. Geom. 76, No. 1, 117–153 (2007; Zbl 1128.57031)] by removing the assumption that the boundary of the manifold is a rational homology 3-sphere.
Manolescu’s construction of the relative Bauer-Furuta invariant is based on the Seiberg-Witten Floer spectrum, introduced for rational homology 3-spheres in [C. Manolescu, J. Differ. Geom. 76, No. 1, 117–153 (2007; Zbl 1128.57031)]. The more general unfolded version of the Seiberg-Witten Floer spectrum defined in the authors’ previous paper has two variations, the type-A “attractor” version and the type-R “repeller” version. The type-A version is an object in a category of ind-spectra, and the type-R version is an object in a category of pro-spectra.
Let \((Y_{\text{in}},\mathfrak{s}_{\text{in}})\) and \((Y_{\text{out}},\mathfrak{s}_{\text{out}})\) be two oriented \(\text{spin}^c\) 3-manifolds and \((X,\hat{\mathfrak{s}})\) a connected \(\text{spin}^c\) cobordism from \((Y_{\text{in}},\mathfrak{s}_{\text{in}})\) to \((Y_{\text{out}},\mathfrak{s}_{\text{out}})\), equipped with a Riemannian metric \(\hat{g}\) and a \(\text{spin}^c\) connection \(\hat{A}_0\). Denote the restrictions of \(\hat{g}\) and \(\hat{A}_0\) to \(Y_{\text{in}}\) by \(g_{\text{in}}\) and \(A_{\text{in}}\) and the restrictions of \(\hat{g}\) and \(\hat{A}_0\) to \(Y_{\text{out}}\) by \(g_{\text{out}}\) and \(A_{\text{out}}\).
The type-A unfolded relative Bauer-Furuta invariant of \(X\) is constructed as a morphism in a stable category \[ \begin{array}{cc} & \underline{\text{bf}}^A(X,\hat{\mathfrak{s}};S^1):\Sigma^{-(V_X^+\oplus V_{\text{in}}) }T(X,\hat{\mathfrak{s}};S^1)\wedge \underline{\text{swf}}^A(Y_{\text{in}},\mathfrak{s}_{\text{in}},A_{\text{in}},g_{\text{in}};S^1) \\ & \longrightarrow \underline{\text{swf}}^A(Y_{\text{out}},\mathfrak{s}_{\text{out}},A_{\text{out}},g_{\text{out}};S^1), \end{array} \] where \(\underline{\text{swf}}^A(Y_{\text{in (out)}},\mathfrak{s}_{\text{in (out)}},A_{\text{in (out})},g_{\text{in (out)}};S^1)\) are the type-A unfolded Seibert-Witten Floer spectra defined in the authors’ earlier paper, \(T(X,\hat{\mathfrak{s}};S^1)\) is the Thom spectrum of a virtual index bundle associated to a family of Dirac operators, \(V_X^+\) is a maximal positive subspace of \(\text{Im}(H^2(X,\partial X; \mathbb{R}) \rightarrow H^2(X;\mathbb{R}))\) with respect to the intersection form, and \(V_\text{in}\) is the cokernel of \(\iota^\ast: H^1(X; \mathbb{R}) \rightarrow H^1(Y_{\text{in}};\mathbb{R})\).
Similarly, the type-R unfolded relative Bauer-Furuta invariant of \(X\) is constructed as a morphism \[ \begin{array}{cc} & \underline{\text{bf}}^R(X,\hat{\mathfrak{s}};S^1):\Sigma^{-(V_X^+\oplus V_{\text{out}}) }T(X,\hat{\mathfrak{s}};S^1)\wedge \underline{\text{swf}}^R(Y_{\text{in}},\mathfrak{s}_{\text{in}},A_{\text{in}},g_{\text{in}};S^1) \\ & \longrightarrow \underline{\text{swf}}^R(Y_{\text{out}},\mathfrak{s}_{\text{out}},A_{\text{out}},g_{\text{out}};S^1), \end{array} \] where \(\underline{\text{swf}}^R(Y_{\text{in (out)}},\mathfrak{s}_{\text{in (out)}},A_{\text{in (out})},g_{\text{in (out)}};S^1)\) are the type-R unfolded Seibert-Witten Floer spectra defined in the authors’ earlier paper, and \(V_\text{out}\) is the cokernel of \(\iota^\ast: H^1(X; \mathbb{R}) \rightarrow H^1(Y_{\text{out}};\mathbb{R})\).
The first main theorem in the paper shows that both \( \underline{\text{bf}}^A(X,\hat{\mathfrak{s}};S^1)\) and \(\underline{\text{bf}}^R(X,\hat{\mathfrak{s}};S^1)\) are invariants of the 4-manifold \(X\).
Theorem 1.2. As one varies \((\hat{g}, \hat{A}_0)\), both domain and target of \(\underline{\text{bf}}^A(X,\hat{\mathfrak{s}};S^1)\) are changed by suspending or desuspending with the same number of copies of \(\mathbb{C}\); the morphism \(\underline{\text{bf}}^A(X,\hat{\mathfrak{s}};S^1)\) is invariant as a stable homotopy class. The same result holds for \(\underline{\text{bf}}^R(X,\hat{\mathfrak{s}};S^1)\). Moreover, when \(c_1(\mathfrak{s}|_Y)\) is torsion, one can construct further normalizations: \[ \begin{array}{cc} & \underline{\text{BF}}^A(X,\hat{\mathfrak{s}};S^1):\Sigma^{-(V_X^+\oplus V_{\text{in}}) }T(X,\hat{\mathfrak{s}};S^1)\wedge \underline{\text{SWF}}^A(Y_{\text{in}},\mathfrak{s}_{\text{in}};S^1) \\ & \longrightarrow \underline{\text{SWF}}^A(Y_{\text{out}},\mathfrak{s}_{\text{out}};S^1), \end{array} \]
\[ \begin{array}{cc} & \underline{\text{BF}}^R(X,\hat{\mathfrak{s}};S^1):\Sigma^{-(V_X^+\oplus V_{\text{out}}) }T(X,\hat{\mathfrak{s}};S^1)\wedge \underline{\text{SWF}}^R(Y_{\text{in}},\mathfrak{s}_{\text{in}};S^1) \\ & \longrightarrow \underline{\text{SWF}}^R(Y_{\text{out}},\mathfrak{s}_{\text{out}};S^1), \end{array} \] which are completely independent of metrics and base connections.
The second main theorem in the paper is a gluing theorem that works for general \(3\)-manifolds \(Y\). However, the authors utilize some additional homological assumptions in order to avoid working with more general categories and spectra.
Theorem 1.5. Let \[ (X_0,\hat{\mathfrak{s}}_0): (Y_0,{\mathfrak{s}}_0) \rightarrow (Y_2,{\mathfrak{s}}_2), \quad (X_1,\hat{\mathfrak{s}}_1): (Y_1,{\mathfrak{s}}_1) \rightarrow (-Y_2,{\mathfrak{s}}_2) \] be connected, \(\text{spin}^c\) cobordisms and \[ (X,\hat{\mathfrak{s}}): (Y_0,{\mathfrak{s}}_0) \sqcup (Y_1,\mathfrak{s}_1) \rightarrow \emptyset \] be the glued corbordism along \(Y_2\). If the following conditions hold
(i)
\(Y_2\) is connected,
(ii)
\(b_1(Y_0) = b_1(Y_1) = 0\),
(iii)
\(\text{im}(H^1(X_0;\mathbb{R}) \rightarrow H^1(Y_2;\mathbb{R})) \subset \text{im}(H^1(X_1;\mathbb{R}) \rightarrow H^1(Y_2;\mathbb{R}))\),
then, under the natural identification between domains and targets, one has \[ (1)\quad \quad BF(X,\hat{\mathfrak{s}})|_{\text{Pic}^0(X,Y_2)} = \tilde{\epsilon}(\underline{\text{bf}}^A(X_0,\hat{\mathfrak{s}}_0), \underline{\text{bf}}^R(X_1,\hat{\mathfrak{s}}_1)), \] where \(\tilde{\epsilon}(\cdot, \cdot)\) is the Spanier-Whitehead duality operation defined in Section 4.3 and the relative Picard torus \(\text{Pic}^0(X,Y_2)\) is given by \[ \text{ker}(H^1(X;\mathbb{R}) \rightarrow H^1(Y_2;\mathbb{R}))/ \text{ker}(H^1(X;\mathbb{Z}) \rightarrow H^1(Y_2;\mathbb{Z})). \]
In future work the authors intend to use their gluing theorem to compute the Bauer-Furuta invariants of irreducible 4-manifolds, drawing new results beyond those based on the Seiberg-Witten invariant.

MSC:

57K41 Invariants of 4-manifolds (including Donaldson and Seiberg-Witten invariants)
55P42 Stable homotopy theory, spectra
57R58 Floer homology

References:

[1] S. Bauer, A stable cohomotopy refinement of Seiberg-Witten invariants. II, In-vent. Math. 155 (2004), 21-40, MR2025299, Zbl 1051.57038. · Zbl 1051.57038
[2] S. Bauer and M. Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants, Invent. Math. 155 (2004), 1-19, MR2025298, Zbl 1050.57024. · Zbl 1050.57024
[3] C. Conley, Isolated invariant sets and the Morse index. CBMS Regional Con-ference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978, MR0511133, Zbl 0397.34056. · Zbl 0397.34056
[4] C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35-61, MR0279830, Zbl 0223.58011. · Zbl 0223.58011
[5] A. Daemi, T. Lidman, D. S. Vela-Vick and C.-M. M. Wong, Obstructions to ribbon homology cobordisms, arXiv:1904.09721. · Zbl 1514.57039
[6] K. A. Froyshøv, Compactness and gluing theory for monopoles, Geometry & Topology Monographs, 15. Geometry & Topology Publications, Coventry, 2008. viii+198 pp. MR2465077, Zbl 1207.57044.
[7] M. Furuta, Monopole equation and the 11 8 -conjecture, Math. Res. Lett. 8 (2001), 279-291, MR1839478, Zbl 0984.57011. · Zbl 0984.57011
[8] T. Khandhawit, A new gauge slice for the relative Bauer-Furuta invariants, Geom. Topol. 19 (2015), 1631-1655, MR3352245, Zbl 1316.57022. · Zbl 1316.57022
[9] T. Khandhawit, J. Lin and H. Sasahira, Unfolded Seiberg-Witten Floer spectra, I: Definition and invariance, Geom. Topol. 22 (2018), 2027-2114, MR3784516, Zbl 1395.57040. · Zbl 1395.57040
[10] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New Mathemat-ical Monographs, 10. Cambridge University Press, Cambridge, 2007. xii+796 pp. MR2388043, Zbl 1158.57002. · Zbl 1158.57002
[11] A. Levine and I. Zemke, Khovanov homology and ribbon concordances, arxiv:1903.01546, to appear in Bulletin of the London Mathematical Society. · Zbl 1442.57005
[12] L. G. Lewis. Jr, J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, 1213. Springer-Verlag, Berlin, 1986. x+538 pp. MR0866482, Zbl 0611.55001. · Zbl 0611.55001
[13] C. Manolescu, Seiberg-Witten-Floer stable homotopy type of three-manifolds with b1 = 0, Geom. Topol. 7 (2003), 889-932, MR2026550, Zbl 1127.57303. · Zbl 1127.57303
[14] C. Manolescu, A gluing theorem for the relative Bauer-Furuta invariants, J. Differential Geom. 76 (2007), 117-153, MR2312050, Zbl 1128.57031. · Zbl 1128.57031
[15] J. P. May, Equivariant homotopy and cohomology theory. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. CBMS Regional Conference Series in Mathematics, 91. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. xiv+366 pp. MR1413302, Zbl 0890.55001.
[16] M. Miller and I. Zemke, Knot Floer homology and strongly-homotopy ribbon concordances, arxiv:1903.05772, to appear in Mathematical Research Letters. · Zbl 1466.57008
[17] L. I. Nicolaescu, Notes on Seiberg-Witten theory, Graduate Studies in Math-ematics, 28. American Mathematical Society, Providence, RI, 2000. xviii+484 pp. MR1787219, Zbl 0978.57027. · Zbl 0978.57027
[18] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41, MR0797044, Zbl 0573.58020. · Zbl 0573.58020
[19] S. Sarkar, Ribbon distance and Khovanov homology arxiv:1903.11095, to appear in Algebraic & Geometric Topology.
[20] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), 769-796, MR1306021, Zbl 0867.57029. · Zbl 0867.57029
[21] I. Zemke, Knot Floer homology obstructs ribbon concordance, Ann. of Math. 190 (2019), 931-947, MR4024565, Zbl 07128143. · Zbl 1432.57021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.