Xu, Jie; Miao, Yu \(L^p(p > 2)\)-strong convergence of an averaging principle for two-time-scales jump-diffusion stochastic differential equations. (English) Zbl 1384.34070 Nonlinear Anal., Hybrid Syst. 18, 33-47 (2015). The authors study the \(L^p\) (\(p > 2\))-strong convergence of the averaging principle (see [R. Z. Has’minskij, Kybernetika 4, 260–279 (1968; Zbl 0231.60045)]) for a class of stochastic differential equations.In fact, under suitable conditions, it is shown that the slow component \(L^p\) \((p>2)\)-strongly converges to the solution of the corresponding averaging equation (Theorem 4.1).Their result extend some interesting results given by D. Liu [Commun. Math. Sci. 8, No. 4, 999–1020 (2010; Zbl 1208.60057); Front. Math. China 7, No. 2, 305–320 (2012; Zbl 1255.60098)], D. Givon et al. [Commun. Math. Sci. 4, No. 4, 707–729 (2006; Zbl 1115.60036)] or G. Wainrib [Electron. Commun. Probab. 18, Paper No. 51, 12 p. (2013; Zbl 1297.70015)]. Reviewer: Romeo Negrea (Timişoara) Cited in 12 Documents MSC: 34F05 Ordinary differential equations and systems with randomness 34C29 Averaging method for ordinary differential equations 34E15 Singular perturbations for ordinary differential equations 60J75 Jump processes (MSC2010) 60H20 Stochastic integral equations Keywords:stochastic differential equations; stochastic averaging principle; \(L^p\)–strong convergence Citations:Zbl 0231.60045; Zbl 1208.60057; Zbl 1255.60098; Zbl 1115.60036; Zbl 1297.70015 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Khasminskii, R. Z., On the principle of averaging the Itô’s stochastic differential equations, Kibernetika, 4, 260-279 (1968), (in Russian) · Zbl 0231.60045 [2] Vanden-Eijnden, E., Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun. Math. Sci., 1, 377-384 (2003) · Zbl 1088.60060 [3] E, W.; Liu, D.; Vanden-Eijnden, E., Analysis of multiscale methods for stochastic differential equations, Comm. Pure Appl. Math., 58, 1, 1544-1585 (2005) · Zbl 1080.60060 [4] Liu, D., Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., 8, 4, 999-1020 (2010) · Zbl 1208.60057 [5] Givon, D., Strong conergence rate for two-time-scale jump-diffusion stochastic differential sysytems, SIAM J. Multi Model Simul., 6, 2, 577-594 (2007) · Zbl 1144.60038 [6] Liu, D., Strong convergence rate of principle of averaging for jump-diffusion processes, Front. Math. China, 7, 2, 305-320 (2012) · Zbl 1255.60098 [7] Givon, D.; Kevrekidis, I. G.; Kupferman, R., Strong convergence of projective integration schemes for singular perturbed stochastic differential systems, Commun. Math. Sci., 4, 707-729 (2006) · Zbl 1115.60036 [8] Golec, J.; Ladde, G., Averaging principle and systems of singularly perturbed stochastic differential equations, J. Math. Phys., 31, 1116-1123 (1990) · Zbl 0701.60057 [9] Golec, J., Stochastic averaging principle for systems with pathwise uniqueness, Stoch. Anal. Appl., 13, 3, 307-322 (1995) · Zbl 0824.60048 [10] Wainrib, G., Double averaging principle of periodically forced slow-fast stochastic systems, Electron. Commun. Probab., 18, 51, 5299-5304 (2013) · Zbl 1297.70015 [11] Freidlin, M. I.; Wentzell, A. D., Random Perturbation of Dynamical Systems (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0922.60006 [12] Kifer, Y., Stochastic versions of Anosov and Neistadt theorems on averaging, Stoch. Dyn., 1, 1, 1-21 (2001) · Zbl 1049.34055 [13] Veretennikov, A. Y., On the averaging principle for systems of stochastic differential equations, Math. USSR-Sb., 69, 271-284 (1991) · Zbl 0724.60069 [14] Protter, P., Stochastic Integration and Differential Equations (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1041.60005 [15] Cerrai, S.; Freidlin, M. I., Averaging principle for a class of stochastic reaction-diffusion equations, Probab. Theory Related Fields, 144, 137-177 (2009) · Zbl 1176.60049 [16] Øksendal, B., Stochastic Differential Equations (2003), Springer: Springer Berlin · Zbl 1025.60026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.