×

Gauge transformations for categorical bundles. (English) Zbl 1402.18007

A categorical bundle is a structure, in terms of category theory, that encodes a classical bundle equipped with connections and some additional entities. The authors have developed the theory of categorical principal bundles in [S. Chatterjee et al., Theory Appl. Categ. 31, 388–417 (2016; Zbl 1343.18009); J. Geom. Phys. 98, 128–149 (2015; Zbl 1339.18005); J. Geom. Phys. 112, 147–174 (2017; Zbl 1355.53018); J. Geom. Phys. 75, 129–161 (2014; Zbl 1280.81087); Theory Appl. Categ. 29, 215–255 (2014; Zbl 1305.18014)]. The principal objective in this paper is to develop a counterpart of the classical gauge transformation in the setting of categorical bundles. There is a considerable literature on category-theoretic approaches to gauge theories [J. C. Baez and D. K. Wise, Commun. Math. Phys. 333, No. 1, 153–186 (2015; Zbl 1308.83017)], [J. C. Baez and J. Huerta, Gen. Relativ. Gravitation 43, No. 9, 2335–2392 (2011; Zbl 1225.83001)], [J. C. Baez and U. Schreiber, Contemp. Math. 431, 7–30 (2007; Zbl 1132.55007)], [J. F. Martins and R. Picken, Differ. Geom. Appl. 29, No. 2, 179–206 (2011; Zbl 1217.53049)], [J. F. Martins and R. Picken, Adv. Math. 226, No. 4, 3309–3366 (2011; Zbl 1214.53043)], [U. Schreiber and K. Waldorf, J. Homotopy Relat. Struct. 12, No. 3, 617–658 (2017; Zbl 1404.18015); Theory Appl. Categ. 28, 476–540 (2013; Zbl 1279.53024)], [A. J. Parzygnat, Theory Appl. Categ. 30, 1319–1428 (2015; Zbl 1341.53078)], [D. Bambusi, in: Multiscale methods in quantum mechanics. Theory and experiment. Papers from the meeting, Rome, Italy, December 16–20, 2002. Boston, MA: Birkhäuser. 23–39 (2004; Zbl 1322.81046)], [E. Soncini and R. Zucchini, J. Geom. Phys. 95, 28–73 (2015; Zbl 1322.81064); J. High Energy Phys. 2014, No. 10, Paper No. 079, 64 p. (2014; Zbl 1333.81272)], [W. Wang, J. Math. Phys. 55, No. 4, 043506, 32 p. (2014; Zbl 1300.81065); Theory Appl. Categ. 30, 1999–2047 (2015; Zbl 1353.18006)], [K. Waldorf, Trans. Am. Math. Soc. 365, No. 8, 4393–4432 (2013; Zbl 1277.53024)]. The authors’ motivation is more differential geometric than category theoretic, and the typical examples are decorated bundles (§2.14) and twisted-product bundels (§3) appearing to find their due place only in the authors’ approach. A categorical connection (§2.11) in the authors’ approach involves several distinct \(1\)-forms and \(2\)-forms that are to be used to prescribe parallel transport.

MSC:

18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
20C99 Representation theory of groups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Baez, John C.; Schreiber, Urs, Higher gauge theory, (Categories in Algebra, Geometry and Mathematical Physics, (2007)), 7-30 · Zbl 1132.55007
[2] Baez, John C.; Wise, Derek K., Teleparallel gravity as a higher gauge theory, Comm. Math. Phys., 333, 1, 153-186, (2015) · Zbl 1308.83017
[3] Martins, João Faria; Picken, Roger, On two-dimensional holonomy, Trans. Amer. Math. Soc., 362, 11, 5657-5695, (2010) · Zbl 1209.53038
[4] Martins, João Faria; Picken, Roger, The fundamental gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module, Differential Geom. Appl., 29, 2, 179-206, (2011) · Zbl 1217.53049
[5] Martins, João Faria; Picken, Roger, Surface holonomy for non-abelian 2-bundles via double groupoids, Adv. Math., 226, 4, 3309-3366, (2011) · Zbl 1214.53043
[6] Parzygnat, Arthur J., Gauge invariant surface holonomy and monopoles, Theory Appl. Categ., 30, 42, 1319-1428, (2015) · Zbl 1341.53078
[7] A.J. Parzygnat, Two-dimensional algebra in lattice gauge theory, ArXiv e-prints, February 2018. Available at arXiv:1802.01139.
[8] Sati, Hisham; Schreiber, Urs; Stasheff, Jim, \(L_\infty\)-algebra connections and applications to string- and Chern-Simons \(n\)-transport, (Quantum Field Theory, (2009), Birkhäuser, Basel), 303-424 · Zbl 1183.83099
[9] Schreiber, Urs; Waldorf, Konrad, Local theory for 2-functors on path 2-groupoids, J. Homotopy Relat. Struct., 12, 3, 617-658, (2017) · Zbl 1404.18015
[10] Schreiber, Urs; Waldorf, Konrad, Connections on non-abelian gerbes and their holonomy, Theory Appl. Categ., 28, 476-540, (2013) · Zbl 1279.53024
[11] Soncini, Emanuele; Zucchini, Roberto, A new formulation of higher parallel transport in higher gauge theory, J. Geom. Phys., 95, 28-73, (2015) · Zbl 1322.81064
[12] Waldorf, Konrad, Surface holonomy, (Handbook of Pseudo-RIemannian Geometry and Supersymmetry, (2010)), 653-682 · Zbl 1220.53034
[13] Konrad Waldorf, A global perspective to connections on principal 2-bundles, ArXiv e-prints, August 2016. Available at arXiv:1608.00401.
[14] Konrad Waldorf, Parallel transport in principal 2-bundles, ArXiv e-prints, April 2017. Available at arXiv:1704.08542.
[15] Wang, Wei, On 3-gauge transformations, 3-curvatures, and gray-categories, J. Math. Phys., 55, 4, 043506, 32, (2014) · Zbl 1300.81065
[16] Wang, Wei, On the 3-representations of groups and the 2-categorical traces, Theory Appl. Categ., 30, 56, 1999-2047, (2015) · Zbl 1353.18006
[17] Wang, Wei, On the global 2-holonomy for a 2-connection on a 2-bundle, J. Geom. Phys., 117, 151-178, (2017) · Zbl 1366.53037
[18] Girelli, Florian; Pfeiffer, Hendryk, Higher gauge theory—differential versus integral formulation, J. Math. Phys., 45, 10, 3949-3971, (2004) · Zbl 1071.53011
[19] Pfeiffer, Henryk, Higher gauge theory and a non-abelian generalization of 2-form electrodynamics, Ann. Phys., 308, 447-477, (2003) · Zbl 1056.70013
[20] H. Abbaspour, F. Wagemann, On 2-Holonomy, ArXiv E-Prints, February 2012. Available at arXiv:1202.2292.
[21] Chatterjee, Saikat; Lahiri, Amitabha; Sengupta, Ambar N., Path space connections and categorical geometry, J. Geom. Phys., 75, 129-161, (2014) · Zbl 1280.81087
[22] Chatterjee, Saikat; Lahiri, Amitabha; Sengupta, Ambar N., Connections on decorated path space bundles, J. Geom. Phys., 112, 147-174, (2017) · Zbl 1355.53018
[23] Chatterjee, Saikat; Lahiri, Amitabha; Sengupta, Ambar N., Construction of categorical bundles from local data, Theory Appl. Categ., 31, 14, 388-417, (2016) · Zbl 1343.18009
[24] Chatterjee, Saikat; Lahiri, Amitabha; Sengupta, Ambar N., Twisted actions of categorical groups, Theory Appl. Categ., 29, 8, 215-255, (2014) · Zbl 1305.18014
[25] Kelly, G. M.; Street, Ross, Review of the elements of \(2\)-categories, (Lecture Notes in Math., vol. 420, (1974)), 75-103 · Zbl 0334.18016
[26] Barrett, John W.; Mackaay, Marco, Categorical representations of categorical groups, Theory Appl. Categ., 16, 20, 529-557, (2006) · Zbl 1108.18003
[27] Peiffer, Renée, Über identitäten zwischen relationen, Math. Ann., 121, 67-99, (1949) · Zbl 0040.15002
[28] Mac Lane, Saunders, Categories for the working Mathematician, (Graduate Texts in Mathematics, vol. 5, (1998), Springer-Verlag New York) · Zbl 0906.18001
[29] Janelidze, G., Internal crossed modules, Georgian Math. J., 10, 1, 99-114, (2003) · Zbl 1069.18009
[30] Chatterjee, Saikat; Lahiri, Amitabha; Sengupta, Ambar N., Twisted-product categorical bundles, J. Geom. Phys., 98, 128-149, (2015) · Zbl 1339.18005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.