Ungar, Abraham Albert Analytic hyperbolic geometry and Albert Einstein’s special theory of relativity. 2nd edition. (English) Zbl 07503149 Singapore: World Scientific (ISBN 978-981-12-4410-0/hbk; 978-981-12-4412-4/ebook). xiii, 752 p. (2022). MSC: 83-02 01A60 51P05 83A05 83C10 85A05 74H40 PDF BibTeX XML Cite \textit{A. A. Ungar}, Analytic hyperbolic geometry and Albert Einstein's special theory of relativity. 2nd edition. Singapore: World Scientific (2022; Zbl 07503149) Full Text: DOI OpenURL
Stepanov, Sergey Relativistic world. Volume 1: Mechanics. (English) Zbl 1426.83001 De Gruyter Graduate. Berlin: De Gruyter (ISBN 978-3-11-051587-9/pbk; 978-3-11-051588-6/ebook). xiv, 390 p. (2018). Reviewer: Abraham A. Ungar (Fargo) MSC: 83-01 83A05 70-01 00A79 83C10 97M50 83C47 PDF BibTeX XML Cite \textit{S. Stepanov}, Relativistic world. Volume 1: Mechanics. Berlin: De Gruyter (2018; Zbl 1426.83001) Full Text: DOI OpenURL
Atiponrat, Watchareepan Topological gyrogroups: generalization of topological groups. (English) Zbl 1382.22008 Topology Appl. 224, 73-82 (2017). Reviewer: Liudmila Sabinina (Cuernavaca) MSC: 22A30 20N05 54H11 PDF BibTeX XML Cite \textit{W. Atiponrat}, Topology Appl. 224, 73--82 (2017; Zbl 1382.22008) Full Text: DOI OpenURL
Watanabe, Keiichi A confirmation by hand calculation that the Möbius ball is a gyrovector space. (English) Zbl 1382.51014 Nihonkai Math. J. 27, No. 1-2, 99-115 (2016). Reviewer: Victor V. Pambuccian (Phoenix) MSC: 51M10 20N05 46C99 51P05 PDF BibTeX XML Cite \textit{K. Watanabe}, Nihonkai Math. J. 27, No. 1--2, 99--115 (2016; Zbl 1382.51014) Full Text: Euclid OpenURL
Abe, Toshikazu; Hatori, Osamu On a characterization of commutativity for {\(C^*\)}-algebras via gyrogroup operations. (English) Zbl 1389.46043 Period. Math. Hung. 72, No. 2, 248-251 (2016). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 46L05 20N05 PDF BibTeX XML Cite \textit{T. Abe} and \textit{O. Hatori}, Period. Math. Hung. 72, No. 2, 248--251 (2016; Zbl 1389.46043) Full Text: DOI OpenURL
Ungar, Abraham Albert Analytic hyperbolic geometry in \(n\) dimensions. An introduction. (English) Zbl 1312.51001 Boca Raton, FL: CRC Press (ISBN 978-1-4822-3667-5/hbk; 978-1-4822-3668-2/ebook). xvii, 601 p. (2015). Reviewer: Rolf Riesinger (Wien) MSC: 51-01 51M10 51M09 51N25 51P05 83A05 20N05 PDF BibTeX XML Cite \textit{A. A. Ungar}, Analytic hyperbolic geometry in \(n\) dimensions. An introduction. Boca Raton, FL: CRC Press (2015; Zbl 1312.51001) Full Text: Link OpenURL
Demirel, O.; Soytürk Seyrantepe, E.; Sönmez, N. Metric and periodic lines in the Poincaré ball model of hyperbolic geometry. (English) Zbl 1367.51019 Bull. Iran. Math. Soc. 38, No. 3, 805-815 (2012). Reviewer: Abraham A. Ungar (Fargo) (MR 3028471) MSC: 51M10 51F99 PDF BibTeX XML Cite \textit{O. Demirel} et al., Bull. Iran. Math. Soc. 38, No. 3, 805--815 (2012; Zbl 1367.51019) OpenURL
Kim, Sejong; Lawson, Jimmie Smooth Bruck loops, symmetric spaces, and nonassociative vector spaces. (English) Zbl 1242.53057 Demonstr. Math. 44, No. 4, 755-779 (2011). Reviewer: Ágota Figula (Debrecen) MSC: 53C35 20N05 22A30 PDF BibTeX XML Cite \textit{S. Kim} and \textit{J. Lawson}, Demonstr. Math. 44, No. 4, 755--779 (2011; Zbl 1242.53057) Full Text: DOI OpenURL
Lawson, Jimmie Clifford algebras, Möbius transformations, Vahlen matrices, and \(B\)-loops. (English) Zbl 1211.20064 Commentat. Math. Univ. Carol. 51, No. 2, 319-331 (2010). Reviewer: Liudmila Sabinina (Cuernavaca) MSC: 20N05 11E88 15A66 53A60 51B10 PDF BibTeX XML Cite \textit{J. Lawson}, Commentat. Math. Univ. Carol. 51, No. 2, 319--331 (2010; Zbl 1211.20064) Full Text: EuDML EMIS OpenURL
Ungar, Abraham Albert A gyrovector space approach to hyperbolic geometry. (English) Zbl 1208.51014 Synthesis Lectures on Mathematics and Statistics 4. San Rafael, CA: Morgan & Claypool Publishers (ISBN 978-1-59829-822-2/pbk; 978-1-59829-823-9/ebook). xii, 182 p. (2009). Reviewer: Victor V. Pambuccian (Phoenix) MSC: 51M10 51-01 PDF BibTeX XML Cite \textit{A. A. Ungar}, A gyrovector space approach to hyperbolic geometry. San Rafael, CA: Morgan \& Claypool Publishers (2009; Zbl 1208.51014) Full Text: DOI OpenURL