## The Riesz-Herz equivalence for capacitary maximal functions.(English)Zbl 1281.42017

The authors consider the maximal operator $M_Cf(x)=\sup_{Q\ni x}\frac1{C(Q)}\int_Q|f(x)|\,\text{d}x,$ associated to a capacity $$C$$ on $$\mathbb R^n$$ (see [J. Cerdà, Contemporary Mathematics 445, 45–59 (2007; Zbl 1141.46313)] and [J. Cerdà, J. Martín and P. Silvestre, Collect. Math. 62, No. 1, 95–118 (2011; Zbl 1225.46021)]). It is a generalization of the classical Hardy-Littlewood maximal operator $$M$$ (with $$C(Q)=|Q|$$, the $$n$$-dimensional volume of a cube $$Q$$) or its fractional version $$M_\alpha$$ (with $$C(Q)=|Q|^{1-\alpha/n}$$, $$0\leq\alpha<n$$).
The authors extend the well-known Riesz-Herz equivalence $$(Mf)^*(t)\approx f^{**}(t)$$, $$t\geq0$$, (where $$f^*$$ denotes the non-increasing rearrangement of $$f$$ and $$f^{**}(t)=\frac1t\int_0^tf^*$$) written also as $$t(Mf)^*(t)\approx K(t,f,L^1,L^\infty)$$ (where $$K$$ is the Peetre $$K$$-functional), for $$M_C$$ instead of $$M$$. Namely, they prove the equivalence $t(M_Cf)^*_C(t)\approx K(t,f,L^1,\mathcal L^{1,C}),\quad t\geq0,$ where $$f^*_C(t)=\inf\big\{\lambda>0; C\big(\{x; |f(x)|>\lambda\}\big)\leq t\big\}$$ (the non-increasing rearrangement with respect to the capacity $$C$$) and $$\mathcal L^{1,C}$$ is the Morrey-type space of functions $$f$$ satisfying the condition $$\|M_Cf\|_{L^\infty}<\infty$$. As a byproduct, the authors obtain a description of the norm of the interpolation space $$(L^1,\mathcal L^{1,C})_{(p-1)/p,p}$$, $$p\in(1,\infty)$$.
Reviewer: Petr Gurka (Praha)

### MSC:

 42B25 Maximal functions, Littlewood-Paley theory 46B70 Interpolation between normed linear spaces

### Citations:

Zbl 1141.46313; Zbl 1225.46021
Full Text:

### References:

 [1] Asekritova, I.U., Krugljak, N., Maligranda, L., Persson, L.-E.: Distribution and rearrangement estimates of the maximal function and interpolation. Stud. Math. 124, 107–132 (1997) · Zbl 0888.42011 [2] Bastero, J., Milman, M., Ruiz, F.J.: Rearrangement of Hardy-Littlewood maximal functions in Lorentz spaces. Proc. Am. Math. Soc. 128, 65–74 (1999) · Zbl 0942.42011 [3] Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976) · Zbl 0344.46071 [4] Bennett, C., Sharpley, R.: Weak type estimates for H p and BMO. Proc. Symp. Pure Math. 35, 201–229 (1979) · Zbl 0423.30026 [5] Berezhnoi, E.I.: Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Am. Math. Soc. 127, 79–87 (1999) · Zbl 0918.42011 [6] Brudnyi, Y., Krugljak, N.: Interpolation Functors and Interpolation Spaces. North-Holland, Amsterdam (1991) · Zbl 0743.46082 [7] Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952) · Zbl 0047.10201 [8] Carleson, L.: Selected Problems on Exceptional Sets (1967) (D. Van Nostrand Company) [9] Cerdà, J.: Lorentz capacity spaces. In: Interpolation Theory and Applications. Contemporary Mathematics, vol. 445, pp. 49–55 (2007) [10] Cerdà, J., Martín, J., Silvestre, P.: Capacitary function spaces. Collect. Math. 62 (2011) · Zbl 1225.46021 [11] Cianchi, A., Kerman, R., Opic, B., Pick, L.: A sharp rearrangement inequality for the maximal operator. Stud. Math. 138, 277–284 (2000) · Zbl 0968.42014 [12] Edmunds, D.E., Opic, B.: Boundedness of fractional maximal operators between classical and weak-type Lorentz spaces. Diss. Math. 410, 50 (2002) · Zbl 1019.42012 [13] Fefferman, R.A.: A theory of entropy in Fourier analysis. Adv. Math. 30, 171–201 (1978) · Zbl 0441.42019 [14] Herz, C.: The Hardy-Littlewood maximal theorem. Symposium on Harmonic Analysis, University of Warwick (1968) · Zbl 0177.15701 [15] Kislyakov, S., Kruglyak, N.: Controlled covering theorems and near-minimizers for spaces of differentiable functions, submitted · Zbl 1270.46003 [16] Kruglyak, N., Kuznetsov, A.: Sharp integral estimates for the fractional maximal function and interpolation. Ark. Mat. 44, 309–326 (2006) · Zbl 1156.42308 [17] Kruglyak, N., Nezskii, D.: Almost optimality of algorithms of dyadic approximation in Q 0=[0,1] n and real interpolation. Algebra Anal. 14(4), 63–90 (2002) (Russian). (English translation in St. Petersburg Math. J. 14(4), 583–602 (2003)) [18] Riesz, F.: Sur un théorème de maximum de MM. Hardy et Littlewood. J. Lond. Math. Soc. 7, 10–13 (1932) · JFM 58.0261.02 [19] Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009) · Zbl 1177.68245 [20] Stein, E.M.: Note on the class Llog L. Stud. Math. 32, 305–310 (1969) · Zbl 0182.47803 [21] Wiener, N.: The ergodic theorem. Duke Math. J. 5, 1–18 (1939) · JFM 65.0516.04 [22] Zani, S.L.: Two norms inequalities for maximal functions on homogeneous spaces and boundary estimates. Stud. Math. 126, 67–94 (1997) · Zbl 0893.42008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.