Kumar, Abhinav Elliptic fibrations on a generic Jacobian Kummer surface. (English) Zbl 1304.14045 J. Algebr. Geom. 23, No. 4, 599-667 (2014). The paper is devoted to the classification of elliptic fibrations with section on the so-called “generic Jacobian Kummer surface”: this is the name for \(\mathrm{Km}(\mathrm{Jac}(C))\), where \(C\) is a genus 2 curve whose Jacobian \(\mathrm{Jac}(C)\) has no extra endomorphisms. For this class of surfaces, the author states the following : Theorem. There are exactly 25 different elliptic fibrations with section on a generic Jacobian Kummer surface \(\mathrm{Km}(\mathrm{Jac}(C))\) over an algebraically closed field of characteristic zero, modulo the action of the automorphism group of the surface and permutations of the Weierstrass points of \(C\). Then the author analyzes in details all the 25 elliptic fibrations in order to show explicitly, for each fibration, the elliptic parameter and the reducible fibers of the fibrations, the Weiestrass equation, torsion and non-torsion sections and a basis of the Mordell-Weil lattice.The motivation for this paper is due to Problem 5 of [M. Kuwata and T. Shioda, Adv. Stud. Pure Math. 50, 177–215 (2008; Zbl 1139.14032)], where the authors suggest the interest to study elliptic fibrations on a Kummer surface \(\mathrm{Km}(\mathrm{Jac}(C))\), where \(C\) is a genus 2 curve. Reviewer: Paola Comparin (Consepción) Cited in 20 Documents MSC: 14J27 Elliptic surfaces, elliptic or Calabi-Yau fibrations 14J28 \(K3\) surfaces and Enriques surfaces Keywords:elliptic fibrations; Kummer surfaces; Weierstrass equation; , Mordell-Weil lattice; Jacobian of a curve Citations:Zbl 1139.14032 Software:SymPol; PermLib PDF BibTeX XML Cite \textit{A. Kumar}, J. Algebr. Geom. 23, No. 4, 599--667 (2014; Zbl 1304.14045) Full Text: DOI arXiv References: [1] Richard Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), no. 1, 133 – 153. · Zbl 0628.20003 [2] J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press, Cambridge, 1996. · Zbl 0857.14018 [3] A. Clebsch, Zur Theorie der binären algebraischen Formen, Verlag von B. G. Teubner, Liepzig, 1872. · JFM 02.0058.02 [4] Koichiro Harada and Mong-Lung Lang, Some elliptic curves arising from the Leech lattice, J. Algebra 125 (1989), no. 2, 298 – 310. · Zbl 0715.11029 [5] J. H. Conway, Three lectures on exceptional groups, Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press, London, 1971, pp. 215 – 247. [6] P. Deligne, Relèvement des surfaces \?3 en caractéristique nulle, Algebraic surfaces (Orsay, 1976 – 78) Lecture Notes in Math., vol. 868, Springer, Berlin-New York, 1981, pp. 58 – 79 (French). Prepared for publication by Luc Illusie. [7] R. W. H. T. Hudson, Kummer’s quartic surface, Cambridge University Press, Cambridge, 1905. · Zbl 0716.14025 [8] J. I. Hutchinson, On some birational transformations of the Kummer surface into itself, Bull. Amer. Math. Soc. 7 (1901), no. 5, 211 – 217. · JFM 32.0641.09 [9] Jun-ichi Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72 (1960), 612 – 649. · Zbl 0122.39002 [10] Jong Hae Keum, Two extremal elliptic fibrations on Jacobian Kummer surfaces, Manuscripta Math. 91 (1996), no. 3, 369 – 377. · Zbl 0880.14018 [11] Jong Hae Keum, Automorphisms of Jacobian Kummer surfaces, Compositio Math. 107 (1997), no. 3, 269 – 288. · Zbl 0891.14013 [12] Jonghae Keum and Shigeyuki Kondō, The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1469 – 1487. · Zbl 0968.14022 [13] Felix Klein, Ueber Configurationen, welche der Kummer’schen Fläche zugleich eingeschrieben und umgeschrieben sind, Math. Ann. 27 (1886), no. 1, 106 – 142 (German). · JFM 19.0808.01 [14] Shigeyuki Kondō, The automorphism group of a generic Jacobian Kummer surface, J. Algebraic Geom. 7 (1998), no. 3, 589 – 609. · Zbl 0948.14034 [15] Abhinav Kumar, \?3 surfaces associated with curves of genus two, Int. Math. Res. Not. IMRN 6 (2008), Art. ID rnm165, 26. · Zbl 1145.14029 [16] Masato Kuwata and Tetsuji Shioda, Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface, Algebraic geometry in East Asia — Hanoi 2005, Adv. Stud. Pure Math., vol. 50, Math. Soc. Japan, Tokyo, 2008, pp. 177 – 215. · Zbl 1139.14032 [17] Jean-François Mestre, Construction de courbes de genre 2 à partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990) Progr. Math., vol. 94, Birkhäuser Boston, Boston, MA, 1991, pp. 313 – 334 (French). · Zbl 0752.14027 [18] Ken-ichi Nishiyama, The Jacobian fibrations on some \?3 surfaces and their Mordell-Weil groups, Japan. J. Math. (N.S.) 22 (1996), no. 2, 293 – 347. · Zbl 0889.14015 [19] Keiji Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves, J. Math. Soc. Japan 41 (1989), no. 4, 651 – 680. · Zbl 0703.14024 [20] I. Piatetski-Shapiro and I. R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv. 5 (1971), 547-587. · Zbl 0253.14006 [21] T. Rehn and A. Schürmann, C++ Tools for Exploiting Polyhedral Symmetries, Lecture Notes in Computer Science Vol. 6327 (2010), 295-298. · Zbl 1295.52020 [22] D. Rusin, Maple input file for reducing a curve \( y^2 =\) quartic to normal form, Mathematical Atlas, ,http://www.math.niu.edu/ rusin/known-math/96/quartic.maple,. [23] Tetsuji Shioda, Classical Kummer surfaces and Mordell-Weil lattices, Algebraic geometry, Contemp. Math., vol. 422, Amer. Math. Soc., Providence, RI, 2007, pp. 213 – 221. · Zbl 1117.14041 [24] Tetsuji Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211 – 240. · Zbl 0725.14017 [25] Hans Sterk, Finiteness results for algebraic \?3 surfaces, Math. Z. 189 (1985), no. 4, 507 – 513. · Zbl 0545.14032 [26] È. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 323 – 348. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.