Kumar, Sunil; Kumar, Amit; Argyros, Ioannis K. A new analysis for the Keller-Segel model of fractional order. (English) Zbl 1365.65233 Numer. Algorithms 75, No. 1, 213-228 (2017). MSC: 65M99 35R11 92E10 35Q92 65M12 PDF BibTeX XML Cite \textit{S. Kumar} et al., Numer. Algorithms 75, No. 1, 213--228 (2017; Zbl 1365.65233) Full Text: DOI OpenURL
Zhang, Yajing; Chen, Xinfu; Hao, Jianghao; Lai, Xin; Qin, Cong An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model. (English) Zbl 1341.34023 J. Math. Anal. Appl. 420, No. 1, 684-704 (2014). Reviewer: Luis Sanchez (Lisboa) MSC: 34B09 34L15 34E05 34E15 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Math. Anal. Appl. 420, No. 1, 684--704 (2014; Zbl 1341.34023) Full Text: DOI OpenURL
Vauchelet, Nicolas Numerical simulation of a kinetic model for chemotaxis. (English) Zbl 1215.92007 Kinet. Relat. Models 3, No. 3, 501-528 (2010). MSC: 92C17 65M12 35Q92 82C80 65C20 PDF BibTeX XML Cite \textit{N. Vauchelet}, Kinet. Relat. Models 3, No. 3, 501--528 (2010; Zbl 1215.92007) Full Text: DOI OpenURL
Winkler, Michael Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. (English) Zbl 1190.92004 J. Differ. Equations 248, No. 12, 2889-2905 (2010). MSC: 92C17 35B40 35K35 35K55 35B35 35Q92 PDF BibTeX XML Cite \textit{M. Winkler}, J. Differ. Equations 248, No. 12, 2889--2905 (2010; Zbl 1190.92004) Full Text: DOI OpenURL
Wrzosek, D. Volume filling effect in modelling chemotaxis. (English) Zbl 1184.35166 Math. Model. Nat. Phenom. 5, No. 1, 123-147 (2010). MSC: 35K59 35K65 35B40 35B41 92C17 35K51 PDF BibTeX XML Cite \textit{D. Wrzosek}, Math. Model. Nat. Phenom. 5, No. 1, 123--147 (2010; Zbl 1184.35166) Full Text: DOI EuDML OpenURL
Hillen, T.; Painter, K. J. A user’s guide to PDE models for chemotaxis. (English) Zbl 1161.92003 J. Math. Biol. 58, No. 1-2, 183-217 (2009). MSC: 92C17 35Q92 65C20 PDF BibTeX XML Cite \textit{T. Hillen} and \textit{K. J. Painter}, J. Math. Biol. 58, No. 1--2, 183--217 (2009; Zbl 1161.92003) Full Text: DOI OpenURL
Cieślak, Tomasz; Winkler, Michael Finite-time blow-up in a quasilinear system of chemotaxis. (English) Zbl 1136.92006 Nonlinearity 21, No. 5, 1057-1076 (2008). MSC: 92C17 35K65 35B35 35B05 PDF BibTeX XML Cite \textit{T. Cieślak} and \textit{M. Winkler}, Nonlinearity 21, No. 5, 1057--1076 (2008; Zbl 1136.92006) Full Text: DOI OpenURL
Corrias, Lucilla; Perthame, Benoît Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces. (English) Zbl 1134.92006 Math. Comput. Modelling 47, No. 7-8, 755-764 (2008). MSC: 92C17 35K30 35Q92 PDF BibTeX XML Cite \textit{L. Corrias} and \textit{B. Perthame}, Math. Comput. Modelling 47, No. 7--8, 755--764 (2008; Zbl 1134.92006) Full Text: DOI OpenURL
Cieślak, Tomasz The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below. (English) Zbl 1103.92007 Biler, Piotr (ed.) et al., Self-similar solutions of nonlinear PDE. Selected papers of the conference, Bȩdlewo, Poland, September 5–9, 2005. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications 74, 127-132 (2006). MSC: 92C17 35K60 35K57 PDF BibTeX XML Cite \textit{T. Cieślak}, Banach Cent. Publ. 74, 127--132 (2006; Zbl 1103.92007) OpenURL
Nagai, Toshitaka; Syukuinn, Rai; Umesako, Masayuki Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in \(\mathbb R^ n\). (English) Zbl 1330.35476 Funkc. Ekvacioj, Ser. Int. 46, No. 3, 383-407 (2003). MSC: 35Q92 35K45 35B40 35K55 92D25 PDF BibTeX XML Cite \textit{T. Nagai} et al., Funkc. Ekvacioj, Ser. Int. 46, No. 3, 383--407 (2003; Zbl 1330.35476) Full Text: DOI OpenURL