## Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry.(English)Zbl 1312.53049

In this paper, the authors are looking for three-dimensional Ricci-solitons with a Lorentz metric (signature $$(2, 1)$$).
They start with an almost paracontact structure $$(\varphi , \psi , \eta , g)$$ at the beginning of the second section. Here, $$\eta$$ is the almost-contact differential 1-form, $$\psi$$ is a vector field (the dual of $$\eta$$), $$\varphi$$ is a complex structure on the kernel $${\mathcal D}$$ of $$\eta$$ (actually a product structure, i.e., $$\varphi ^2 =I$$), and $$g$$ satisfies $$(\varphi \;, \varphi \;)=-g+\eta \otimes \eta$$.
$$M$$ is normal (Definition 2.1) if $$\varphi$$ extends to an integrable product structure on $$M\times {\mathbb R}$$ with the natural product of $${\mathcal D}\times {\mathbb R}^2$$. This is the same as (2.4) according to [J. Wełyczko, Result. Math. 54, No. 3–4, 377–387 (2009; Zbl 1180.53080)].
There is a serious “typo” in the page 119, line 7. “(1.4a)” should possibly be “the first equation of (2.4)”.
Definition 2.2 says that 1. $$M$$ is quasi-para-Sasakian if $$\alpha =0$$ and $$\beta \neq 0$$ (in (2.4)); and 2. para-Kenmotsu if $$\beta=0$$ and $$\alpha \neq 0$$.
One of the major result is Theorem 3.1: If $$\rho$$ is a parallel symmetric 2-tensor which is $$\varphi$$ skew-symmetric, then it is a multiple of the metric $$g$$.
By applying Theorem 3.1 to the $$\rho$$ in (4.11), the authors obtains all kind of Ricci-solitons.

### MSC:

 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics

Zbl 1180.53080
Full Text:

### References:

  Bejan, CL; Crasmareanu, M, Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen, 78, 235-243, (2011) · Zbl 1274.53097  Brînzănescu, V; Slobodeanu, R, Holomorphicity and walczak formula on Sasakian manifolds, J. Geom. Phys., 57, 193-207, (2006) · Zbl 1160.53359  Brozos-Vázquez, M; Calvaruso, G; García-Río, E; Gavino-Fernández, S, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math., 188, 385-403, (2012) · Zbl 1264.53052  Calvaruso, G, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55, 697-718, (2012) · Zbl 1273.53020  Calvaruso, G; Kowalski, O, On the Ricci operator of locally homogeneous Lorentzian 3-manifolds, Cent. Eur. J. Math., 7, 124-139, (2009) · Zbl 1180.53070  Calvaruso, G., Perrone, D.: Geometry of $$H$$-paracontact metric manifolds. arXiv:1307.7662 · Zbl 1374.53111  Cappelletti Montano, B, Bi-paracontact structures and Legendre foliations, Kodai Math. J., 33, 473-512, (2010) · Zbl 1215.53074  Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI; Science Press, New York, (2006). MR2274812 (2008a:53068) · Zbl 1118.53001  Craioveanu, M., Slesar, V.: A Weitzenböck formula for a closed Riemannian manifold with two orthogonal complementary distributions, Bull. Math. Soc. Sci. Math. Roumanie (NS), 52(100), 3, 271-279 (2009). MR2554486 (2010j:58078) · Zbl 1199.58003  De, UC; Tripathi, MM, Ricci tensor in $$3$$-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43, 247-255, (2003) · Zbl 1073.53060  Ivanov, S; Vassilev, D; Zamkovoy, S, Conformal paracontact curvature and the local flatness theorem, Geom. Dedicata, 144, 79-100, (2010) · Zbl 1195.53048  Kaneyuki, S; Williams, FL, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99, 173-187, (1985) · Zbl 0576.53024  Leistner, T, On the classification of Lorentzian holonomy groups, J. Differ. Geom., 76, 423-484, (2007) · Zbl 1129.53029  Onda, K, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata, 147, 313-322, (2010) · Zbl 1203.53044  Petersen, P.: Riemannian geometry, 2nd edn. Graduate Texts in Mathematics, vol. 171, Springer, New York (2006). MR2243772 (2007a:53001) · Zbl 1220.53002  Sharma, R, Second order parallel tensor in real and complex space forms, Internat. J. Math. Math. Sci., 12, 787-790, (1989) · Zbl 0696.53012  Welyczko, J, On Legendre curves in 3-dimensional normal almost contact metric manifolds, Soochow J. Math., 33, 929-937, (2007) · Zbl 1144.53041  Welyczko, J.: On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results Math. 54(3-4) 377-387 (2009). MR2534454 (2010g:53153) · Zbl 1180.53080  Welyczko, J.: Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. Math. (2013). doi:10.1007/s00009-013-0361-2, arXiv:1212.5839 · Zbl 1300.53021  Zamkovoy, S, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36, 37-60, (2008) · Zbl 1177.53031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.