×

Universal lower bounds for potential energy of spherical codes. (English) Zbl 1404.94154

Summary: We derive and investigate lower bounds for the potential energy of finite spherical point sets (spherical codes). Our bounds are optimal in the following sense – they cannot be improved by employing polynomials of the same or lower degrees in the Delsarte-Yudin method. However, improvements are sometimes possible, and we provide a necessary and sufficient condition for the existence of such better bounds. All our bounds can be obtained in a unified manner that does not depend on the potential function, provided the potential is given by an absolutely monotone function of the inner product between pairs of points, and this is the reason we call them universal. We also establish a criterion for a given code of dimension \(n\) and cardinality \(N\) not to be LP-universally optimal; e.g., we show that two codes conjectured by B. Ballinger et al. [Exp. Math. 18, No. 3, 257–283 (2009; Zbl 1185.68771)] to be universally optimal are not LP-universally optimal.

MSC:

94B65 Bounds on codes
52A40 Inequalities and extremum problems involving convexity in convex geometry
05B30 Other designs, configurations

Citations:

Zbl 1185.68771
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andreev, N.N.: Location of points on a sphere with minimal energy, Tr. Math. Inst. Steklova 219, 27-31 (1997) (in Russian); English translation: Proc. Inst. Math. Steklov 219, 20-24 (1997) · Zbl 0929.52010
[2] Ballinger, B., Blekherman, G., Cohn, H., Giansiracusa, N., Kelly, E., Schürmann, A.: Experimental study of energy-minimizing point configurations on spheres. Exp. Math. 18, 257-283 (2009) · Zbl 1185.68771 · doi:10.1080/10586458.2009.10129052
[3] Bannai, E., Damerell, R.M.: Tight spherical designs I. J. Math. Soc. Jpn. 31, 199-207 (1979) · Zbl 0403.05022 · doi:10.2969/jmsj/03110199
[4] Bannai, E., Damerell, R.M.: Tight spherical designs II. J. Lond. Math. Soc. 21, 13-30 (1980) · Zbl 0436.05018 · doi:10.1112/jlms/s2-21.1.13
[5] Beckermann, B., Bustamante, J., Martinez-Cruz, R., Quesada, J.: Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa. Calcolo 51, 319-328 (2014) · Zbl 1312.65032 · doi:10.1007/s10092-013-0087-3
[6] Borodachov, S., Hardin, D., Saff, E.: Minimal Discrete Energy on Rectifiable Sets. Springer, Berlin (2016). (to appear) · Zbl 1145.11059
[7] Boumova, S.P.: Applications of polynomials to spherical codes anddesigns, PhD Dissert, TU Eindhoven (2001) · Zbl 1095.49031
[8] Boyvalenkov, P.G.: Linear programming bounds for spherical codes and designs. Dr. Sci. Dissert., Inst. Math. Inf. BAS, Sofia (2004) (in Bulgarian) · Zbl 0857.94023
[9] Boyvalenkov, P., Bumova, S., Danev, D.: Necessary conditions for existence of some designs in polynomial metric spaces. Eur. J. Comb. 20, 213-225 (1999) · Zbl 0929.05008 · doi:10.1006/eujc.1998.0278
[10] Boyvalenkov, P.G., Danev, D.P.: On Maximal Codes in Polynomial Metric Spaces. Lecture Notes in Computer Science, vol. 1255, pp. 29-38. Springer (1997) · Zbl 1043.94547
[11] Boyvalenkov, P.G., Danev, D.P., Bumova, S.P.: Upper bounds on the minimum distance of spherical codes. IEEE Trans. Inf. Theory 41, 1576-1581 (1996) · Zbl 0857.94023 · doi:10.1109/18.532903
[12] Boyvalenkov, P., Danev, D., Landjev, I.: On maximal spherical codes II. J. Comb. Des. 7, 316-326 (1999) · Zbl 0948.94021 · doi:10.1002/(SICI)1520-6610(1999)7:5<316::AID-JCD2>3.0.CO;2-Z
[13] Cohn, H., Conway, J., Elkies, N., Kumar, A.: The \[D_4\] D4 root system is not universally optimal. Exp. Math. 16, 313-320 (2007) · Zbl 1137.05020 · doi:10.1080/10586458.2007.10129008
[14] Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99-148 (2006) · Zbl 1198.52009 · doi:10.1090/S0894-0347-06-00546-7
[15] Cohn, H., Woo, J.: Three point bounds for energy minimization. J. Am. Math. Soc. 25, 929-958 (2012) · Zbl 1335.31006 · doi:10.1090/S0894-0347-2012-00737-1
[16] Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, New York (1963) · Zbl 0111.06003
[17] Delsarte, P.: An algebraic approach to the association schemes in coding theory. Philips Res. Rep. Suppl. 10 (1973) · Zbl 1075.05606
[18] Delsarte, P., Goethals, J.-M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363-388 (1977) · Zbl 0376.05015 · doi:10.1007/BF03187604
[19] Erdélyi, T., Magnus, A., Nevai, P.: Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials. SIAM J. Math. Anal. 25, 602-614 (1994) · Zbl 0805.33013 · doi:10.1137/S0036141092236863
[20] Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not. Am. Math. Soc. 51, 1186-1194 (2004) · Zbl 1095.49031
[21] Kabatiansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space (Russian). Problemy Peredachi Informacii 14, 3-25 (1978). English translation in Problems of Information Transmission 14, 1-17 (1978) · Zbl 0407.52005
[22] Kolushov, A.V., Yudin, V.A.: Extremal dispositions of points on the sphere. Anal. Math. 23, 25-34 (1997) · Zbl 0880.51008 · doi:10.1007/BF02789828
[23] Koornwinder, T.H.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25, 236-246 (1973) · Zbl 0276.33023 · doi:10.1137/0125027
[24] Krasikov, I.: An upper bound on Jacobi polynomials. J. Approx. Theory 149, 116-130 (2007) · Zbl 1173.33007 · doi:10.1016/j.jat.2007.04.008
[25] Levenshtein, V.I.: Bounds for packings in metric spaces and certain applications. Probl. Kibern. 40, 44-110 (1983). (in Russian) · Zbl 0517.52009
[26] Levenshtein, V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl. Math. 25, 1-82 (1992) · Zbl 0767.05097 · doi:10.1007/BF00053379
[27] Levenshtein, VI; Pless, VS (ed.); Huffman, WC (ed.), Universal bounds for codes and designs, 499-648 (1998), Amsterdam · Zbl 0983.94056
[28] Matrin, W.J., Williford, J.S.: There are finitely many \[Q\] Q-polynomial association schemes with given first multiplicity at least three. Eur. J. Comb. 30, 698-704 (2009) · Zbl 1169.05054 · doi:10.1016/j.ejc.2008.07.009
[29] Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966) · Zbl 0138.05101 · doi:10.1007/BFb0094775
[30] Musin, O.: The kissing number in four dimensions. Ann. Math. 168, 1-32 (2008) · Zbl 1169.52008 · doi:10.4007/annals.2008.168.1
[31] Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5-11 (1997) · Zbl 0901.11028 · doi:10.1007/BF03024331
[32] Sidelnikov, V.M.: On extremal polynomials used to estimate the size of codes. Probl. Inf. Transm. 16, 174-186 (1980) · Zbl 0468.94010
[33] Szegő, G.: Orthogonal Polynomials, vol. 23. AMS Col. Publ, Providence (1939) · doi:10.1090/coll/023
[34] Watson, G.N.: A Treatise of the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995) · Zbl 0849.33001
[35] Yudin, V.A.: Minimal potential energy of a point system of charges. Discret. Mat. 4, 115-121 (1992) (in Russian). English translation: Discr. Math. Appl. 3, 75-81 (1993) · Zbl 0769.31004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.