Jana, Rakesh A \(q\)-analogue of the bipartite distance matrix of a nonsingular tree. (English) Zbl 07611201 Discrete Math. 346, No. 1, Article ID 113153, 15 p. (2023). MSC: 05C50 05C05 15A18 05Bxx PDF BibTeX XML Cite \textit{R. Jana}, Discrete Math. 346, No. 1, Article ID 113153, 15 p. (2023; Zbl 07611201) Full Text: DOI OpenURL
de Jong, J. V. Two strong 3-flow theorems for planar graphs. (English) Zbl 1495.05116 J. Comb. 13, No. 4, 445-479 (2022). MSC: 05C21 05C10 PDF BibTeX XML Cite \textit{J. V. de Jong}, J. Comb. 13, No. 4, 445--479 (2022; Zbl 1495.05116) Full Text: DOI arXiv OpenURL
Lai, Chunhui On the number of edges in some graphs. (English) Zbl 1442.05095 Discrete Appl. Math. 283, 751-755 (2020). MSC: 05C30 05C38 PDF BibTeX XML Cite \textit{C. Lai}, Discrete Appl. Math. 283, 751--755 (2020; Zbl 1442.05095) Full Text: DOI arXiv OpenURL
Prałat, Paweł; Wormald, Nick Almost all 5-regular graphs have a 3-flow. (English) Zbl 1495.05118 J. Graph Theory 93, No. 2, 147-156 (2020). MSC: 05C21 05C80 PDF BibTeX XML Cite \textit{P. Prałat} and \textit{N. Wormald}, J. Graph Theory 93, No. 2, 147--156 (2020; Zbl 1495.05118) Full Text: DOI arXiv OpenURL
Zeng, De Yan; Zhai, Dong Yang; Yin, Jian Hua Exact solution to an extremal problem on graphic sequences with a realization containing every 2-tree on \(k\) vertices. (English) Zbl 1437.05051 Acta Math. Sin., Engl. Ser. 36, No. 4, 462-486 (2020). MSC: 05C07 05C35 PDF BibTeX XML Cite \textit{D. Y. Zeng} et al., Acta Math. Sin., Engl. Ser. 36, No. 4, 462--486 (2020; Zbl 1437.05051) Full Text: DOI arXiv OpenURL
Zeng, De-Yan; Yin, Jian-Hua An extremal problem for a graphic sequence to have a realization containing every 2-tree with prescribed size. (English) Zbl 1343.05084 Discrete Math. Theor. Comput. Sci. 17, No. 3, 315-326 (2016). MSC: 05C35 05C07 05C05 05C62 PDF BibTeX XML Cite \textit{D.-Y. Zeng} and \textit{J.-H. Yin}, Discrete Math. Theor. Comput. Sci. 17, No. 3, 315--326 (2016; Zbl 1343.05084) Full Text: Link OpenURL
Zhao, Kewen A simple proof of Whitney’s theorem on connectivity in graphs. (English) Zbl 1224.05278 Math. Bohem. 136, No. 1, 25-26 (2011). MSC: 05C40 05C38 05C45 PDF BibTeX XML Cite \textit{K. Zhao}, Math. Bohem. 136, No. 1, 25--26 (2011; Zbl 1224.05278) Full Text: EuDML OpenURL
Paul, Michael Joseph; Shershin, Carmen Baytan; Shershin, Anthony Connors Notes on sufficient conditions for a graph to be hamiltonian. (English) Zbl 0764.05053 Int. J. Math. Math. Sci. 14, No. 4, 825-827 (1991). Reviewer: F. Tian (Beijing) MSC: 05C45 05C20 PDF BibTeX XML Cite \textit{M. J. Paul} et al., Int. J. Math. Math. Sci. 14, No. 4, 825--827 (1991; Zbl 0764.05053) Full Text: DOI EuDML OpenURL