On factorization of Schatten class type mappings. (English) Zbl 1113.46040

Let \(H_1 ,\dots , H_n\) be Hilbert spaces and \(F\) a Banach space. The author shows that the space \(L(S_2 )(H_1 ,\dots ,H_n ;F)\) of continuous multilinear mappings of Schatten class type \({\mathcal S}_2\) coincides with the space \(L_{d,p}(H_1, \dots ,H_n;F)\) of continuous multilinear \(p\)-dominated mappings, if \(1 \leq p \leq 2\). (See H.–A.Braunß and H.Junek [Note Mat.10, No.1, 47–58 (1990; Zbl 0773.46020)] and R.Alencar and M.C.Matos, “Some classes of multilinear mappings between Banach spaces” (Publicaciones del Departamento de Análisis Matemático 12, Universidad Complutense de Madrid, Madrid) (1989)] for definitions.) Moreover, an analogous result is true for spaces of \(m\)-homogeneous polynomials of these types.
The main results of this article are characterizations of multilinear mappings and polynomials of type \({\mathcal S}_2\) using factorizations through \(L_1\) and \(L_{\infty}\) spaces. The results are applied to obtain a factorization result for holomorphic mappings of Schatten class type \({\mathcal S}_2\).


46G25 (Spaces of) multilinear mappings, polynomials
46G20 Infinite-dimensional holomorphy
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46T25 Holomorphic maps in nonlinear functional analysis


Zbl 0773.46020
Full Text: DOI


[1] and , Some classes of multilinear mappings between Banach spaces, Publicaciones del Departamento de Análisis Matemático 12 (Universidad Complutense de Madrid, Madrid, 1989).
[2] Braunss, Arch. Math. (Basel) 59 pp 450– (1992) · Zbl 0760.46041 · doi:10.1007/BF01236040
[3] Braunss, Note Mat. 10 pp 47– (1990)
[4] , and , Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics Vol. 43 (Cambridge University Press, Cambridge, 1995). · Zbl 0855.47016
[5] Partial Differential Equations in Generalized Fischer Spaces for Hilbert–Schmidt Holomorphy Type, Ph.D. thesis, University of Maryland (1971).
[6] Lindenstrauss, Studia Math. 29 pp 275– (1968)
[7] Matos, Rev. Mat. Complut. 6 pp 61– (1993) · doi:10.5209/rev_REMA.1993.v6.n1.17846
[8] Absolutely summing holomorphic mappings, An. Acad. Brasil. Ciênc. 68 (1) (1996). · Zbl 0854.46042
[9] Matos, Collect. Math. 54 pp 111– (2003)
[10] Mendes, J. Math. Anal. Appl. 304 pp 137– (2005)
[11] Complex Analysis in Banach Spaces, North-Holland Mathematics Studies Vol. 120 (North-Holland, Amsterdam, 1986).
[12] Nachbin, Studia Math. 38 pp 407– (1970)
[13] Pelczynski, Studia Math. 28 pp 355– (1967)
[14] Operadores Multilineales Absolutamente Sumantes, Dissertation, Universidad Complutense de Madrid (2002).
[15] Ideals of Multilinear Functionals, Proceedings of the Second International Conference on Operator Algebras, Ideals and their Applications in Theoretical Physics, Teubner-Texte zur Mathematik Bd. 67 (Teubner, Stuttgart, 1983).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.