×

Graded dimensions of principal subspaces and modular Andrews-Gordon-type series. (English) Zbl 1295.11035


MSC:

11F11 Holomorphic modular forms of integral weight
11F20 Dedekind eta function, Dedekind sums
11P84 Partition identities; identities of Rogers-Ramanujan type
17B69 Vertex operators; vertex operator algebras and related structures
33D67 Basic hypergeometric functions associated with root systems

Citations:

Zbl 1234.05040
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1017/CBO9781139167239
[2] DOI: 10.1007/BF01232032 · Zbl 0799.17014
[3] DOI: 10.1007/978-3-540-74119-0 · Zbl 1197.11047
[4] DOI: 10.1016/j.jpaa.2006.10.018 · Zbl 1184.17010
[5] DOI: 10.1016/j.jalgebra.2009.09.029 · Zbl 1221.17032
[6] DOI: 10.1016/0001-8708(78)90020-8 · Zbl 0391.17009
[7] DOI: 10.1073/pnas.81.10.3256 · Zbl 0543.20016
[8] Frenkel I., Pure and Applied Mathematics 134, in: Vertex Operator Algebras and the Monster (1988) · Zbl 0674.17001
[9] DOI: 10.1016/0022-4049(95)00143-3 · Zbl 0871.17018
[10] DOI: 10.2307/2372962 · Zbl 0100.27303
[11] DOI: 10.1017/CBO9780511626234
[12] DOI: 10.1016/0001-8708(78)90099-3 · Zbl 0388.17003
[13] DOI: 10.1016/0001-8708(78)90004-X · Zbl 0384.10008
[14] DOI: 10.1073/pnas.78.12.7254 · Zbl 0472.17005
[15] DOI: 10.1016/S0001-8708(82)80012-1 · Zbl 0488.17006
[16] DOI: 10.1007/BF01388447 · Zbl 0577.17009
[17] DOI: 10.1007/BF01418931 · Zbl 0244.17005
[18] DOI: 10.1007/s00031-004-7014-2 · Zbl 1112.17028
[19] Milas A., London Math. Soc. Lecture Note Ser. 372 pp 330– (2010)
[20] DOI: 10.1142/S1793042108001377 · Zbl 1214.11050
[21] DOI: 10.1007/978-3-540-30308-4_2 · Zbl 1193.81092
[22] DOI: 10.1007/978-3-642-80615-5
[23] DOI: 10.2307/1970831 · Zbl 0266.10022
[24] DOI: 10.1007/BF02465764 · Zbl 0938.17005
[25] DOI: 10.4310/CNTP.2011.v5.n3.a2 · Zbl 1256.81102
[26] DOI: 10.1112/blms/bdr019 · Zbl 1234.05040
[27] DOI: 10.1007/978-3-540-30308-4_1 · Zbl 1176.11026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.