×

Nonlinear dispersive wave equations in two space dimensions. (English) Zbl 1331.35317

The paper is concerned with the Cauchy problem \[ \begin{cases} \left(\partial_t^2+\frac{1}{\rho^2}(-\Delta)^\rho\right)u = F(\partial_tu),\quad (t,x)\in\mathbb{R}\times\mathbb{R}^2,\\ u(0,x)=u_0(x),\;\partial_tu(0,x)=u_1(x),\quad x\in\mathbb{R}^2, \end{cases} \] where \((-\Delta)^\rho={\mathcal F}^{-1}|\xi|^{2\rho}{\mathcal F}\), \({\mathcal F}\) the Fourier transform, \(F(\partial_tu)=\lambda|\partial_tu|^{p-1}\partial_tu\) or \(F(\partial_tu)=\lambda|\partial_tu|^p\), \(\lambda\in\mathbb{C}\), and either \(0<\rho<1\), \(p>2\), or \(\rho=1\), \(p>3\), or \(1<\rho<2\), \(p>1+\rho\). In these cases the authors prove global existence of solutions and obtain time-decay estimates. This is a sequel of the authors’ previous paper [Differ. Integral Equ. 25, No. 7–8, 685–698 (2012; Zbl 1265.35331)] in one space dimension.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35R11 Fractional partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
35P25 Scattering theory for PDEs

Citations:

Zbl 1265.35331
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Brenner, On \(L^p-L^q\) estimate of the wave equation,, Math. Z., 145, 251 (1975) · Zbl 0321.35052
[2] Y. Cho, Remarks on some dispersive estimates,, Comm. Pure Appl. Anal., 10, 1121 (2011) · Zbl 1232.35136 · doi:10.3934/cpaa.2011.10.1121
[3] J. Ginibre, Generalized Strichartz inequality for the wave equation,, J. Funct. Anal., 133, 50 (1995) · Zbl 0849.35064 · doi:10.1006/jfan.1995.1119
[4] N. Hayashi, Global existence of small solutions to quadratic nonlinear Schrödinger equations,, Commun. P.D.E., 18, 1109 (1993) · Zbl 0786.35120 · doi:10.1080/03605309308820965
[5] N. Hayashi, Global existence of solutions to nonlinear dispersive wave equations,, Differential and Integral Equations, 25, 685 (2012) · Zbl 1265.35331
[6] N. Hayashi, Non existence of asymptotically free solution of systems of nolinear Schrödinger equations,, Electron. J. Diff. Equ., 162, 1 (2012) · Zbl 1254.35208
[7] K. Hidano, Global existence and asymptotic behavior of solutions for nonlinear wave equations,, Indiana Univ. Math. J., 44, 1273 (1995) · Zbl 0858.35085 · doi:10.1512/iumj.1995.44.2028
[8] C. E. Kenig, Oscillatory integrals and regularity of dispersive equations,, Indiana Univ. Math. J., 40, 33 (1991) · Zbl 0738.35022 · doi:10.1512/iumj.1991.40.40003
[9] S. Klainerman, The null condition and global existence to nonlinear wave equations,, Lect. Appl. Math., 23, 293 (1986) · Zbl 0599.35105
[10] M. Nakamura, Remarks on Keel-Smith-Sogge estimates and some applications to nonlinear higher order wave equations,, Differential and Integral Equations, 24, 519 (2011) · Zbl 1249.35226
[11] T. Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations,, Nonlinear Analysis, 14, 765 (1990) · Zbl 0715.35073 · doi:10.1016/0362-546X(90)90104-O
[12] J-Q. Yao, Comportment à l’infini des solutions d’une équation de Schrödinger non linéaire dans un domaine extérier,, C. R. Acad, 294, 163 (1982) · Zbl 0511.35078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.